BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 20236552)

  • 1. Evolutionary history and stress regulation of the lectin superfamily in higher plants.
    Jiang SY; Ma Z; Ramachandran S
    BMC Evol Biol; 2010 Mar; 10():79. PubMed ID: 20236552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and evolution of the lectin family in soybean (Glycine max).
    Van Holle S; Van Damme EJ
    Molecules; 2015 Feb; 20(2):2868-91. PubMed ID: 25679048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expansion Mechanisms and Evolutionary History on Genes Encoding DNA Glycosylases and Their Involvement in Stress and Hormone Signaling.
    Jiang SY; Ramachandran S
    Genome Biol Evol; 2016 Apr; 8(4):1165-84. PubMed ID: 27026054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide analysis of NAC transcription factor family in rice.
    Nuruzzaman M; Manimekalai R; Sharoni AM; Satoh K; Kondoh H; Ooka H; Kikuchi S
    Gene; 2010 Oct; 465(1-2):30-44. PubMed ID: 20600702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution and structural diversification of Nictaba-like lectin genes in food crops with a focus on soybean (Glycine max).
    Van Holle S; Rougé P; Van Damme EJM
    Ann Bot; 2017 Mar; 119(5):901-914. PubMed ID: 28087663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sucrose metabolism gene families and their biological functions.
    Jiang SY; Chi YH; Wang JZ; Zhou JX; Cheng YS; Zhang BL; Ma A; Vanitha J; Ramachandran S
    Sci Rep; 2015 Nov; 5():17583. PubMed ID: 26616172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics.
    Van Holle S; De Schutter K; Eggermont L; Tsaneva M; Dang L; Van Damme EJM
    Int J Mol Sci; 2017 May; 18(6):. PubMed ID: 28587095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide survey of the RIP domain family in Oryza sativa and their expression profiles under various abiotic and biotic stresses.
    Jiang SY; Ramamoorthy R; Bhalla R; Luan HF; Venkatesh PN; Cai M; Ramachandran S
    Plant Mol Biol; 2008 Aug; 67(6):603-14. PubMed ID: 18493723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valine-glutamine (VQ) motif coding genes are ancient and non-plant-specific with comprehensive expression regulation by various biotic and abiotic stresses.
    Jiang SY; Sevugan M; Ramachandran S
    BMC Genomics; 2018 May; 19(1):342. PubMed ID: 29743038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean.
    Mochida K; Yoshida T; Sakurai T; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    DNA Res; 2010 Oct; 17(5):303-24. PubMed ID: 20817745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary analysis of three gibberellin oxidase genes in rice, Arabidopsis, and soybean.
    Han F; Zhu B
    Gene; 2011 Feb; 473(1):23-35. PubMed ID: 21056641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional behavior of EUL-related rice lectins toward important abiotic and biotic stresses.
    Al Atalah B; De Vleesschauwer D; Xu J; Fouquaert E; Höfte M; Van Damme EJ
    J Plant Physiol; 2014 Jul; 171(12):986-92. PubMed ID: 24974324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription factor families have much higher expansion rates in plants than in animals.
    Shiu SH; Shih MC; Li WH
    Plant Physiol; 2005 Sep; 139(1):18-26. PubMed ID: 16166257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) gene superfamily in rice (Oryza sativa).
    Gao C; Han B
    Gene; 2009 Feb; 431(1-2):86-94. PubMed ID: 19071198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual tandem expansion and positive selection in subgroups of the plant GRAS transcription factor superfamily.
    Wu N; Zhu Y; Song W; Li Y; Yan Y; Hu Y
    BMC Plant Biol; 2014 Dec; 14():373. PubMed ID: 25524588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth.
    Kong H; Landherr LL; Frohlich MW; Leebens-Mack J; Ma H; dePamphilis CW
    Plant J; 2007 Jun; 50(5):873-85. PubMed ID: 17470057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli.
    Hanada K; Zou C; Lehti-Shiu MD; Shinozaki K; Shiu SH
    Plant Physiol; 2008 Oct; 148(2):993-1003. PubMed ID: 18715958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants.
    Zhou QY; Tian AG; Zou HF; Xie ZM; Lei G; Huang J; Wang CM; Wang HW; Zhang JS; Chen SY
    Plant Biotechnol J; 2008 Jun; 6(5):486-503. PubMed ID: 18384508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.).
    Rana RM; Dong S; Ali Z; Huang J; Zhang HS
    Genet Mol Res; 2012 Oct; 11(4):3676-87. PubMed ID: 22930426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.