These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 20236552)
1. Evolutionary history and stress regulation of the lectin superfamily in higher plants. Jiang SY; Ma Z; Ramachandran S BMC Evol Biol; 2010 Mar; 10():79. PubMed ID: 20236552 [TBL] [Abstract][Full Text] [Related]
2. Distribution and evolution of the lectin family in soybean (Glycine max). Van Holle S; Van Damme EJ Molecules; 2015 Feb; 20(2):2868-91. PubMed ID: 25679048 [TBL] [Abstract][Full Text] [Related]
3. Expansion Mechanisms and Evolutionary History on Genes Encoding DNA Glycosylases and Their Involvement in Stress and Hormone Signaling. Jiang SY; Ramachandran S Genome Biol Evol; 2016 Apr; 8(4):1165-84. PubMed ID: 27026054 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide analysis of NAC transcription factor family in rice. Nuruzzaman M; Manimekalai R; Sharoni AM; Satoh K; Kondoh H; Ooka H; Kikuchi S Gene; 2010 Oct; 465(1-2):30-44. PubMed ID: 20600702 [TBL] [Abstract][Full Text] [Related]
5. Evolution and structural diversification of Nictaba-like lectin genes in food crops with a focus on soybean (Glycine max). Van Holle S; Rougé P; Van Damme EJM Ann Bot; 2017 Mar; 119(5):901-914. PubMed ID: 28087663 [TBL] [Abstract][Full Text] [Related]
6. Sucrose metabolism gene families and their biological functions. Jiang SY; Chi YH; Wang JZ; Zhou JX; Cheng YS; Zhang BL; Ma A; Vanitha J; Ramachandran S Sci Rep; 2015 Nov; 5():17583. PubMed ID: 26616172 [TBL] [Abstract][Full Text] [Related]
7. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics. Van Holle S; De Schutter K; Eggermont L; Tsaneva M; Dang L; Van Damme EJM Int J Mol Sci; 2017 May; 18(6):. PubMed ID: 28587095 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide survey of the RIP domain family in Oryza sativa and their expression profiles under various abiotic and biotic stresses. Jiang SY; Ramamoorthy R; Bhalla R; Luan HF; Venkatesh PN; Cai M; Ramachandran S Plant Mol Biol; 2008 Aug; 67(6):603-14. PubMed ID: 18493723 [TBL] [Abstract][Full Text] [Related]
9. Valine-glutamine (VQ) motif coding genes are ancient and non-plant-specific with comprehensive expression regulation by various biotic and abiotic stresses. Jiang SY; Sevugan M; Ramachandran S BMC Genomics; 2018 May; 19(1):342. PubMed ID: 29743038 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean. Mochida K; Yoshida T; Sakurai T; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS DNA Res; 2010 Oct; 17(5):303-24. PubMed ID: 20817745 [TBL] [Abstract][Full Text] [Related]
11. Evolutionary analysis of three gibberellin oxidase genes in rice, Arabidopsis, and soybean. Han F; Zhu B Gene; 2011 Feb; 473(1):23-35. PubMed ID: 21056641 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional behavior of EUL-related rice lectins toward important abiotic and biotic stresses. Al Atalah B; De Vleesschauwer D; Xu J; Fouquaert E; Höfte M; Van Damme EJ J Plant Physiol; 2014 Jul; 171(12):986-92. PubMed ID: 24974324 [TBL] [Abstract][Full Text] [Related]
13. Transcription factor families have much higher expansion rates in plants than in animals. Shiu SH; Shih MC; Li WH Plant Physiol; 2005 Sep; 139(1):18-26. PubMed ID: 16166257 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) gene superfamily in rice (Oryza sativa). Gao C; Han B Gene; 2009 Feb; 431(1-2):86-94. PubMed ID: 19071198 [TBL] [Abstract][Full Text] [Related]
15. Unusual tandem expansion and positive selection in subgroups of the plant GRAS transcription factor superfamily. Wu N; Zhu Y; Song W; Li Y; Yan Y; Hu Y BMC Plant Biol; 2014 Dec; 14():373. PubMed ID: 25524588 [TBL] [Abstract][Full Text] [Related]
16. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Kong H; Landherr LL; Frohlich MW; Leebens-Mack J; Ma H; dePamphilis CW Plant J; 2007 Jun; 50(5):873-85. PubMed ID: 17470057 [TBL] [Abstract][Full Text] [Related]
17. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Hanada K; Zou C; Lehti-Shiu MD; Shinozaki K; Shiu SH Plant Physiol; 2008 Oct; 148(2):993-1003. PubMed ID: 18715958 [TBL] [Abstract][Full Text] [Related]
18. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Zhou QY; Tian AG; Zou HF; Xie ZM; Lei G; Huang J; Wang CM; Wang HW; Zhang JS; Chen SY Plant Biotechnol J; 2008 Jun; 6(5):486-503. PubMed ID: 18384508 [TBL] [Abstract][Full Text] [Related]
19. Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). Rana RM; Dong S; Ali Z; Huang J; Zhang HS Genet Mol Res; 2012 Oct; 11(4):3676-87. PubMed ID: 22930426 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]