These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 20236606)
1. Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies. Streeter JE; Gessner R; Miles I; Dayton PA Mol Imaging; 2010 Apr; 9(2):87-95. PubMed ID: 20236606 [TBL] [Abstract][Full Text] [Related]
2. Assessment of molecular imaging of angiogenesis with three-dimensional ultrasonography. Streeter JE; Gessner RC; Tsuruta J; Feingold S; Dayton PA Mol Imaging; 2011 Dec; 10(6):460-8. PubMed ID: 22201537 [TBL] [Abstract][Full Text] [Related]
3. Optimizing Sensitivity of Ultrasound Contrast-Enhanced Super-Resolution Imaging by Tailoring Size Distribution of Microbubble Contrast Agent. Lin F; Tsuruta JK; Rojas JD; Dayton PA Ultrasound Med Biol; 2017 Oct; 43(10):2488-2493. PubMed ID: 28668636 [TBL] [Abstract][Full Text] [Related]
4. Molecular Acoustic Angiography: A New Technique for High-resolution Superharmonic Ultrasound Molecular Imaging. Shelton SE; Lindsey BD; Tsuruta JK; Foster FS; Dayton PA Ultrasound Med Biol; 2016 Mar; 42(3):769-81. PubMed ID: 26678155 [TBL] [Abstract][Full Text] [Related]
5. Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice. Sirsi S; Feshitan J; Kwan J; Homma S; Borden M Ultrasound Med Biol; 2010 Jun; 36(6):935-48. PubMed ID: 20447755 [TBL] [Abstract][Full Text] [Related]
6. BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Pochon S; Tardy I; Bussat P; Bettinger T; Brochot J; von Wronski M; Passantino L; Schneider M Invest Radiol; 2010 Feb; 45(2):89-95. PubMed ID: 20027118 [TBL] [Abstract][Full Text] [Related]
7. In vivo demonstration of cancer molecular imaging with ultrasound radiation force and buried-ligand microbubbles. Borden MA; Streeter JE; Sirsi SR; Dayton PA Mol Imaging; 2013 Sep; 12(6):357-63. PubMed ID: 23981781 [TBL] [Abstract][Full Text] [Related]
8. Nonlinear Imaging of Microbubble Contrast Agent Using the Volterra Filter: In Vivo Results. Du J; Liu D; Ebbini ES IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2069-2081. PubMed ID: 27705855 [TBL] [Abstract][Full Text] [Related]
9. Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging. Talu E; Hettiarachchi K; Zhao S; Powell RL; Lee AP; Longo ML; Dayton PA Mol Imaging; 2007; 6(6):384-92. PubMed ID: 18053409 [TBL] [Abstract][Full Text] [Related]
10. Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. Unnikrishnan S; Klibanov AL AJR Am J Roentgenol; 2012 Aug; 199(2):292-9. PubMed ID: 22826389 [TBL] [Abstract][Full Text] [Related]
11. In vivo quantification of ultrasound targeted microbubbles to enhance cancer assessment. Sciallero C; Daglio E; Trucco A Contrast Media Mol Imaging; 2016 Jul; 11(4):313-8. PubMed ID: 27157493 [TBL] [Abstract][Full Text] [Related]
12. On the relationship between microbubble fragmentation, deflation and broadband superharmonic signal production. Lindsey BD; Rojas JD; Dayton PA Ultrasound Med Biol; 2015 Jun; 41(6):1711-25. PubMed ID: 25766572 [TBL] [Abstract][Full Text] [Related]
13. In vitro characterization and in vivo ultrasound molecular imaging of nucleolin-targeted microbubbles. Zhang H; Ingham ES; Gagnon MK; Mahakian LM; Liu J; Foiret JL; Willmann JK; Ferrara KW Biomaterials; 2017 Feb; 118():63-73. PubMed ID: 27940383 [TBL] [Abstract][Full Text] [Related]
14. Imaging of angiogenesis using Cadence contrast pulse sequencing and targeted contrast agents. Stieger SM; Dayton PA; Borden MA; Caskey CF; Griffey SM; Wisner ER; Ferrara KW Contrast Media Mol Imaging; 2008; 3(1):9-18. PubMed ID: 18335479 [TBL] [Abstract][Full Text] [Related]
15. An in vivo evaluation of the effect of repeated administration and clearance of targeted contrast agents on molecular imaging signal enhancement. Streeter JE; Dayton PA Theranostics; 2013; 3(2):93-8. PubMed ID: 23424189 [TBL] [Abstract][Full Text] [Related]
16. In Vivo Molecular Imaging Using Low-Boiling-Point Phase-Change Contrast Agents: A Proof of Concept Study. Rojas JD; Dayton PA Ultrasound Med Biol; 2019 Jan; 45(1):177-191. PubMed ID: 30318123 [TBL] [Abstract][Full Text] [Related]
17. Validation of Normalized Singular Spectrum Area as a Classifier for Molecularly Targeted Microbubble Adherence. Herbst EB; Unnikrishnan S; Klibanov AL; Mauldin FW; Hossack JA Ultrasound Med Biol; 2019 Sep; 45(9):2493-2501. PubMed ID: 31227262 [TBL] [Abstract][Full Text] [Related]
18. Effect of surface architecture on in vivo ultrasound contrast persistence of targeted size-selected microbubbles. Chen CC; Sirsi SR; Homma S; Borden MA Ultrasound Med Biol; 2012 Mar; 38(3):492-503. PubMed ID: 22305060 [TBL] [Abstract][Full Text] [Related]
19. Quantitative volumetric perfusion mapping of the microvasculature using contrast ultrasound. Feingold S; Gessner R; Guracar IM; Dayton PA Invest Radiol; 2010 Oct; 45(10):669-74. PubMed ID: 20808232 [TBL] [Abstract][Full Text] [Related]
20. Targeted Ultrasound Contrast Imaging of Tumor Vasculature With Positively Charged Microbubbles. Diakova GB; Du Z; Klibanov AL Invest Radiol; 2020 Nov; 55(11):736-740. PubMed ID: 32569011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]