BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20236645)

  • 1. Influence of the sample-solvent on protein retention, mass transfer and unfolding kinetics in hydrophobic interaction chromatography.
    Muca R; Marek W; Piatkowski W; Antos D
    J Chromatogr A; 2010 Apr; 1217(17):2812-20. PubMed ID: 20236645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altering efficiency of hydrophobic interaction chromatography by combined salt and temperature effects.
    Muca R; Piatkowski W; Antos D
    J Chromatogr A; 2009 Dec; 1216(50):8712-21. PubMed ID: 19419727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic interaction chromatography of proteins V. Quantitative assessment of conformational changes.
    Ueberbacher R; Haimer E; Hahn R; Jungbauer A
    J Chromatogr A; 2008 Jul; 1198-1199():154-63. PubMed ID: 18541249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple-injection technique for isolating a target protein from multicomponent mixtures.
    Marek W; Piątkowski W; Antos D
    J Chromatogr A; 2011 Aug; 1218(32):5423-33. PubMed ID: 21396649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular insight into protein conformational transition in hydrophobic charge induction chromatography: a molecular dynamics simulation.
    Zhang L; Zhao G; Sun Y
    J Phys Chem B; 2009 May; 113(19):6873-80. PubMed ID: 19374422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 5-Aminoindole, a new ligand for hydrophobic charge induction chromatography.
    Zhao G; Peng G; Li F; Shi Q; Sun Y
    J Chromatogr A; 2008 Nov; 1211(1-2):90-8. PubMed ID: 18947830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic interaction chromatography of proteins IV. Kinetics of protein spreading.
    Haimer E; Tscheliessnig A; Hahn R; Jungbauer A
    J Chromatogr A; 2007 Jan; 1139(1):84-94. PubMed ID: 17116304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic interaction chromatography of proteins: thermodynamic analysis of conformational changes.
    Ueberbacher R; Rodler A; Hahn R; Jungbauer A
    J Chromatogr A; 2010 Jan; 1217(2):184-90. PubMed ID: 19501365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein instability during HIC: describing the effects of mobile phase conditions on instability and chromatographic retention.
    Xiao Y; Freed AS; Jones TT; Makrodimitris K; O'Connell JP; Fernandez EJ
    Biotechnol Bioeng; 2006 Apr; 93(6):1177-89. PubMed ID: 16444741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2006 Jun; 128(24):7796-806. PubMed ID: 16771493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of globular proteins in H2O and D2O.
    Efimova YM; Haemers S; Wierczinski B; Norde W; van Well AA
    Biopolymers; 2007 Feb; 85(3):264-73. PubMed ID: 17143859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of applying different solvents for the mobile phase and for sample injection.
    Gedicke K; Tomusiak M; Antos D; Seidel-Morgenstern A
    J Chromatogr A; 2005 Oct; 1092(1):142-8. PubMed ID: 16188569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suitability of commercial hydrophobic interaction sorbents for temperature-controlled protein liquid chromatography under low salt conditions.
    Müller TK; Franzreb M
    J Chromatogr A; 2012 Oct; 1260():88-96. PubMed ID: 22954746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoscopic simulation of adsorption of peptides in a hydrophobic chromatography system.
    Makrodimitris K; Fernandez EJ; Woolf TB; O'Connell JP
    Anal Chem; 2005 Mar; 77(5):1243-52. PubMed ID: 15732903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic control of protein conformation transition in chromatographic separation based on hydrophobic interactions: molecular dynamics simulation.
    Zhang L; Lu D; Liu Z
    J Chromatogr A; 2009 Mar; 1216(12):2483-90. PubMed ID: 19178912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic interaction adsorption of whey proteins: effect of temperature and salt concentration and thermodynamic analysis.
    Bonomo RC; Minim LA; Coimbra JS; Fontan RC; Mendes da Silva LH; Minim VP
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Nov; 844(1):6-14. PubMed ID: 16844436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein instability during HIC: evidence of unfolding reversibility, and apparent adsorption strength of disulfide bond-reduced alpha-lactalbumin variants.
    Deitcher RW; Xiao Y; O'Connell JP; Fernandez EJ
    Biotechnol Bioeng; 2009 Apr; 102(5):1416-27. PubMed ID: 19152385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature on competitive adsorption of the solute and the organic solvent in reversed-phase liquid chromatography.
    Poplewska I; Piatkowski W; Antos D
    J Chromatogr A; 2006 Jan; 1103(2):284-95. PubMed ID: 16343511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overcoming solubility limits in overloaded gradient hydrophobic interaction chromatography.
    Poplewska I; Piątkowski W; Antos D
    J Chromatogr A; 2015 Mar; 1386():1-12. PubMed ID: 25687455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modes of conformational changes of proteins adsorbed on a planar hydrophobic polymer surface reflecting their adsorption behaviors.
    Ishiguro R; Yokoyama Y; Maeda H; Shimamura A; Kameyama K; Hiramatsu K
    J Colloid Interface Sci; 2005 Oct; 290(1):91-101. PubMed ID: 16122545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.