These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 20236874)
1. Accurate measurement of bone mineral density using clinical CT imaging with single energy beam spectral intensity correction. Zhang J; Yan CH; Chui CK; Ong SH IEEE Trans Med Imaging; 2010 Jul; 29(7):1382-9. PubMed ID: 20236874 [TBL] [Abstract][Full Text] [Related]
2. Performance Evaluation of Material Decomposition With Rapid-Kilovoltage-Switching Dual-Energy CT and Implications for Assessing Bone Mineral Density. Wait JM; Cody D; Jones AK; Rong J; Baladandayuthapani V; Kappadath SC AJR Am J Roentgenol; 2015 Jun; 204(6):1234-41. PubMed ID: 26001233 [TBL] [Abstract][Full Text] [Related]
3. The significant effects of bone structure on inherent patient-specific DXA in vivo bone mineral density measurement inaccuracies. Bolotin HH Med Phys; 2004 Apr; 31(4):774-88. PubMed ID: 15124995 [TBL] [Abstract][Full Text] [Related]
4. Computed Tomography Number Measurement Consistency Under Different Beam Hardening Conditions: Comparison Between Dual-Energy Spectral Computed Tomography and Conventional Computed Tomography Imaging in Phantom Experiment. He T; Qian X; Zhai R; Yang Z J Comput Assist Tomogr; 2015; 39(6):981-5. PubMed ID: 26196347 [TBL] [Abstract][Full Text] [Related]
5. Quantitative image-based spectral reconstruction for computed tomography. Heismann B; Balda M Med Phys; 2009 Oct; 36(10):4471-85. PubMed ID: 19928078 [TBL] [Abstract][Full Text] [Related]
6. Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction. Yan CH; Whalen RT; Beaupré GS; Yen SY; Napel S IEEE Trans Med Imaging; 2000 Jan; 19(1):1-11. PubMed ID: 10782614 [TBL] [Abstract][Full Text] [Related]
7. Empirical beam hardening correction (EBHC) for CT. Kyriakou Y; Meyer E; Prell D; Kachelriess M Med Phys; 2010 Oct; 37(10):5179-87. PubMed ID: 21089751 [TBL] [Abstract][Full Text] [Related]
9. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography. Cai C; Rodet T; Legoupil S; Mohammad-Djafari A Med Phys; 2013 Nov; 40(11):111916. PubMed ID: 24320449 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the quantitative capability of a home-made cone-beam micro computed tomography system. Chueh HS; Tsai WK; Fu HM; Chen JC Comput Med Imaging Graph; 2006; 30(6-7):349-55. PubMed ID: 17067784 [TBL] [Abstract][Full Text] [Related]
11. Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation. Idris A E; Fessler JA Phys Med Biol; 2003 Aug; 48(15):2453-77. PubMed ID: 12953909 [TBL] [Abstract][Full Text] [Related]
12. Computed tomography-based attenuation correction in neurological positron emission tomography: evaluation of the effect of the X-ray tube voltage on quantitative analysis. Reza Ay M; Zaidi H Nucl Med Commun; 2006 Apr; 27(4):339-46. PubMed ID: 16531919 [TBL] [Abstract][Full Text] [Related]
13. Beam hardening correction in CT myocardial perfusion measurement. So A; Hsieh J; Li JY; Lee TY Phys Med Biol; 2009 May; 54(10):3031-50. PubMed ID: 19398817 [TBL] [Abstract][Full Text] [Related]
14. DXA-equivalent quantification of bone mineral density using dual-layer spectral CT scout scans. Laugerette A; Schwaiger BJ; Brown K; Frerking LC; Kopp FK; Mei K; Sellerer T; Kirschke J; Baum T; Gersing AS; Pfeiffer D; Fingerle AA; Rummeny EJ; Proksa R; Noël PB; Pfeiffer F Eur Radiol; 2019 Sep; 29(9):4624-4634. PubMed ID: 30758656 [TBL] [Abstract][Full Text] [Related]
15. Surface extraction from multi-material components for metrology using dual energy CT. Heinzl C; Kastner J; Gröller E IEEE Trans Vis Comput Graph; 2007; 13(6):1520-7. PubMed ID: 17968105 [TBL] [Abstract][Full Text] [Related]
16. Characterization and correction of beam-hardening artifacts during dynamic volume CT assessment of myocardial perfusion. Kitagawa K; George RT; Arbab-Zadeh A; Lima JA; Lardo AC Radiology; 2010 Jul; 256(1):111-8. PubMed ID: 20574089 [TBL] [Abstract][Full Text] [Related]
17. On two-parameter models of photon cross sections: application to dual-energy CT imaging. Williamson JF; Li S; Devic S; Whiting BR; Lerma FA Med Phys; 2006 Nov; 33(11):4115-29. PubMed ID: 17153391 [TBL] [Abstract][Full Text] [Related]
18. Correlation between CT attenuation value and iodine concentration in vitro: discrepancy between gemstone spectral imaging on single-source dual-energy CT and traditional polychromatic X-ray imaging. Wang L; Liu B; Wu XW; Wang J; Zhou Y; Wang WQ; Zhu XH; Yu YQ; Li XH; Zhang S; Shen Y J Med Imaging Radiat Oncol; 2012 Aug; 56(4):379-83. PubMed ID: 22883644 [TBL] [Abstract][Full Text] [Related]
19. Dual-Energy X-Ray Absorptiometry for Measurement of Phalangeal Bone Mineral Density on a Slot-Scanning Digital Radiography System. Dendere R; Potgieter JH; Steiner S; Whiley SP; Douglas TS IEEE Trans Biomed Eng; 2015 Dec; 62(12):2850-9. PubMed ID: 26099139 [TBL] [Abstract][Full Text] [Related]