These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 20236939)
1. Insulin-dependent diabetes mellitus in mice does not alter liver heparan sulfate. Bishop JR; Foley E; Lawrence R; Esko JD J Biol Chem; 2010 May; 285(19):14658-62. PubMed ID: 20236939 [TBL] [Abstract][Full Text] [Related]
2. Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. Stanford KI; Bishop JR; Foley EM; Gonzales JC; Niesman IR; Witztum JL; Esko JD J Clin Invest; 2009 Nov; 119(11):3236-45. PubMed ID: 19805913 [TBL] [Abstract][Full Text] [Related]
3. Heparan sulfate 2-O-sulfotransferase is required for triglyceride-rich lipoprotein clearance. Stanford KI; Wang L; Castagnola J; Song D; Bishop JR; Brown JR; Lawrence R; Bai X; Habuchi H; Tanaka M; Cardoso WV; Kimata K; Esko JD J Biol Chem; 2010 Jan; 285(1):286-94. PubMed ID: 19889634 [TBL] [Abstract][Full Text] [Related]
4. Hepatic remnant lipoprotein clearance by heparan sulfate proteoglycans and low-density lipoprotein receptors depend on dietary conditions in mice. Foley EM; Gordts PLSM; Stanford KI; Gonzales JC; Lawrence R; Stoddard N; Esko JD Arterioscler Thromb Vasc Biol; 2013 Sep; 33(9):2065-74. PubMed ID: 23846497 [TBL] [Abstract][Full Text] [Related]
5. Decreased lipoprotein clearance is responsible for increased cholesterol in LDL receptor knockout mice with streptozotocin-induced diabetes. Goldberg IJ; Hu Y; Noh HL; Wei J; Huggins LA; Rackmill MG; Hamai H; Reid BN; Blaner WS; Huang LS Diabetes; 2008 Jun; 57(6):1674-82. PubMed ID: 18346984 [TBL] [Abstract][Full Text] [Related]
6. Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. MacArthur JM; Bishop JR; Stanford KI; Wang L; Bensadoun A; Witztum JL; Esko JD J Clin Invest; 2007 Jan; 117(1):153-64. PubMed ID: 17200715 [TBL] [Abstract][Full Text] [Related]
7. Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans. Gonzales JC; Gordts PL; Foley EM; Esko JD J Clin Invest; 2013 Jun; 123(6):2742-51. PubMed ID: 23676495 [TBL] [Abstract][Full Text] [Related]
8. Shedding of syndecan-1 from human hepatocytes alters very low density lipoprotein clearance. Deng Y; Foley EM; Gonzales JC; Gordts PL; Li Y; Esko JD Hepatology; 2012 Jan; 55(1):277-86. PubMed ID: 21898481 [TBL] [Abstract][Full Text] [Related]
9. Hepatic heparan sulfate proteoglycans and endocytic clearance of triglyceride-rich lipoproteins. Foley EM; Esko JD Prog Mol Biol Transl Sci; 2010; 93():213-33. PubMed ID: 20807647 [TBL] [Abstract][Full Text] [Related]
10. Delayed catabolism of apoB-48 lipoproteins due to decreased heparan sulfate proteoglycan production in diabetic mice. Ebara T; Conde K; Kako Y; Liu Y; Xu Y; Ramakrishnan R; Goldberg IJ; Shachter NS J Clin Invest; 2000 Jun; 105(12):1807-18. PubMed ID: 10862796 [TBL] [Abstract][Full Text] [Related]
11. Triglyceride-rich lipoprotein binding and uptake by heparan sulfate proteoglycan receptors in a CRISPR/Cas9 library of Hep3B mutants. Anower-E-Khuda F; Singh G; Deng Y; Gordts PLSM; Esko JD Glycobiology; 2019 Jul; 29(8):582-592. PubMed ID: 31094413 [TBL] [Abstract][Full Text] [Related]
12. Proteinuria converts hepatic heparan sulfate to an effective proprotein convertase subtilisin kexin type 9 enzyme binding partner. Shrestha P; Yazdani S; Vivès RR; El Masri R; Dam W; van de Sluis B; van den Born J Kidney Int; 2021 Jun; 99(6):1369-1381. PubMed ID: 33609572 [TBL] [Abstract][Full Text] [Related]
13. Influence of glucose on production and N-sulfation of heparan sulfate in cultured adipocyte cells. Parthasarathy N; Gotow LF; Bottoms JD; Obunike JC; Naggi A; Casu B; Goldberg IJ; Wagner WD Mol Cell Biochem; 2000 Oct; 213(1-2):1-9. PubMed ID: 11129947 [TBL] [Abstract][Full Text] [Related]
14. Release of glomerular heparan-35SO4 proteoglycan by heparin from glomeruli of streptozocin-induced diabetic rats. Klein DJ; Oegema TR; Brown DM Diabetes; 1989 Jan; 38(1):130-9. PubMed ID: 2521210 [TBL] [Abstract][Full Text] [Related]
15. Membrane-anchored proteoglycans of mouse macrophages: P388D1 cells express a syndecan-4-like heparan sulfate proteoglycan and a distinct chondroitin sulfate form. Yeaman C; Rapraeger AC J Cell Physiol; 1993 Nov; 157(2):413-25. PubMed ID: 8227171 [TBL] [Abstract][Full Text] [Related]
17. Low-Density Lipoprotein Receptor Signaling Mediates the Triglyceride-Lowering Action of Akkermansia muciniphila in Genetic-Induced Hyperlipidemia. Shen J; Tong X; Sud N; Khound R; Song Y; Maldonado-Gomez MX; Walter J; Su Q Arterioscler Thromb Vasc Biol; 2016 Jul; 36(7):1448-56. PubMed ID: 27230129 [TBL] [Abstract][Full Text] [Related]
18. Enhanced cellular uptake of remnant high-density lipoprotein particles: a mechanism for high-density lipoprotein lowering in insulin resistance and hypertriglyceridemia. Xiao C; Watanabe T; Zhang Y; Trigatti B; Szeto L; Connelly PW; Marcovina S; Vaisar T; Heinecke JW; Lewis GF Circ Res; 2008 Jul; 103(2):159-66. PubMed ID: 18556574 [TBL] [Abstract][Full Text] [Related]
19. Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. Bode L; Salvestrini C; Park PW; Li JP; Esko JD; Yamaguchi Y; Murch S; Freeze HH J Clin Invest; 2008 Jan; 118(1):229-38. PubMed ID: 18064305 [TBL] [Abstract][Full Text] [Related]
20. The amino-terminal 1-185 domain of apoE promotes the clearance of lipoprotein remnants in vivo. The carboxy-terminal domain is required for induction of hyperlipidemia in normal and apoE-deficient mice. Kypreos KE; Morani P; van Dijk KW; Havekes LM; Zannis VI Biochemistry; 2001 May; 40(20):6027-35. PubMed ID: 11352738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]