These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 20237600)

  • 1. Segmental chromosomal duplications harbouring group IV CONSTANS-like genes in cereals.
    Cockram J; Howells RM; O'Sullivan DM
    Genome; 2010 Mar; 53(3):231-40. PubMed ID: 20237600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum).
    Wiebe K; Harris NS; Faris JD; Clarke JM; Knox RE; Taylor GJ; Pozniak CJ
    Theor Appl Genet; 2010 Oct; 121(6):1047-58. PubMed ID: 20559817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The bioinformatics challenges in comparative analysis of cereal genomes-an overview.
    Bellgard M; Ye J; Gojobori T; Appels R
    Funct Integr Genomics; 2004 Mar; 4(1):1-11. PubMed ID: 14770300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis.
    Griffiths S; Dunford RP; Coupland G; Laurie DA
    Plant Physiol; 2003 Apr; 131(4):1855-67. PubMed ID: 12692345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a deletion and genetic linkage map for the 5A and 5B chromosomes of wheat (Triticum aestivum).
    Gadaleta A; Giancaspro A; Giove SL; Zacheo S; Incerti O; Simeone R; Colasuonno P; Nigro D; Valè G; Cattivelli L; Stanca M; Blanco A
    Genome; 2012 Jun; 55(6):417-27. PubMed ID: 22624876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unlocking the barley genome by chromosomal and comparative genomics.
    Mayer KF; Martis M; Hedley PE; Simková H; Liu H; Morris JA; Steuernagel B; Taudien S; Roessner S; Gundlach H; Kubaláková M; Suchánková P; Murat F; Felder M; Nussbaumer T; Graner A; Salse J; Endo T; Sakai H; Tanaka T; Itoh T; Sato K; Platzer M; Matsumoto T; Scholz U; Dolezel J; Waugh R; Stein N
    Plant Cell; 2011 Apr; 23(4):1249-63. PubMed ID: 21467582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution.
    Salse J; Bolot S; Throude M; Jouffe V; Piegu B; Quraishi UM; Calcagno T; Cooke R; Delseny M; Feuillet C
    Plant Cell; 2008 Jan; 20(1):11-24. PubMed ID: 18178768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparative molecular-genetic mapping of genomes of rye (Secale cereale L.) and other cereals].
    Malyshev SV; Korzun VN; Zaben'kova KI; Voĭlokov AV; Berner A; Kartel' NA
    Tsitol Genet; 2003; 37(5):9-20. PubMed ID: 14650323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A.
    Dilbirligi M; Erayman M; Campbell BT; Randhawa HS; Baenziger PS; Dweikat I; Gill KS
    Genomics; 2006 Jul; 88(1):74-87. PubMed ID: 16624516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications.
    Rice Chromosomes 11 and 12 Sequencing Consortia
    BMC Biol; 2005 Sep; 3():20. PubMed ID: 16188032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular, phylogenetic and comparative genomic analysis of the cytokinin oxidase/dehydrogenase gene family in the Poaceae.
    Mameaux S; Cockram J; Thiel T; Steuernagel B; Stein N; Taudien S; Jack P; Werner P; Gray JC; Greenland AJ; Powell W
    Plant Biotechnol J; 2012 Jan; 10(1):67-82. PubMed ID: 21838715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Analysis of Coding and Non-Coding Features within Insect Tolerance Loci in Wheat with Their Homologs in Cereal Genomes.
    Muslu T; Akpinar BA; Biyiklioglu-Kaya S; Yuce M; Budak H
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that rice and other cereals are ancient aneuploids.
    Vandepoele K; Simillion C; Van de Peer Y
    Plant Cell; 2003 Sep; 15(9):2192-202. PubMed ID: 12953120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sixty million years in evolution of soft grain trait in grasses: emergence of the softness locus in the common ancestor of Pooideae and Ehrhartoideae, after their divergence from Panicoideae.
    Charles M; Tang H; Belcram H; Paterson A; Gornicki P; Chalhoub B
    Mol Biol Evol; 2009 Jul; 26(7):1651-61. PubMed ID: 19395588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole genome approaches to identify early meiotic gene candidates in cereals.
    Bovill WD; Deveshwar P; Kapoor S; Able JA
    Funct Integr Genomics; 2009 May; 9(2):219-29. PubMed ID: 18836753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant science. Surprises inside a green grass genome.
    Bevan M
    Science; 2003 Jun; 300(5625):1514-5. PubMed ID: 12791971
    [No Abstract]   [Full Text] [Related]  

  • 17. Cereal genome analysis using rice as a model.
    Havukkala IJ
    Curr Opin Genet Dev; 1996 Dec; 6(6):711-4. PubMed ID: 8994841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel Domestication of the Heading Date 1 Gene in Cereals.
    Liu H; Liu H; Zhou L; Zhang Z; Zhang X; Wang M; Li H; Lin Z
    Mol Biol Evol; 2015 Oct; 32(10):2726-37. PubMed ID: 26116860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple genetic pathways for seed shattering in the grasses.
    Li W; Gill BS
    Funct Integr Genomics; 2006 Oct; 6(4):300-9. PubMed ID: 16404644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How can we use genomics to improve cereals with rice as a reference genome?
    Xu Y; McCouch SR; Zhang Q
    Plant Mol Biol; 2005 Sep; 59(1):7-26. PubMed ID: 16217598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.