These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 20237650)

  • 1. Interplay of heritage and habitat in the distribution of bacterial signal transduction systems.
    Galperin MY; Higdon R; Kolker E
    Mol Biosyst; 2010 Apr; 6(4):721-8. PubMed ID: 20237650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts.
    Galperin MY
    BMC Microbiol; 2005 Jun; 5():35. PubMed ID: 15955239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems.
    Galperin MY; Makarova KS; Wolf YI; Koonin EV
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29263101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On prokaryotic intelligence: strategies for sensing the environment.
    Marijuán PC; Navarro J; del Moral R
    Biosystems; 2010 Feb; 99(2):94-103. PubMed ID: 19781596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary Principles of Bacterial Signaling Capacity and Complexity.
    Mo R; Liu Y; Chen Y; Mao Y; Gao B
    mBio; 2022 Jun; 13(3):e0076422. PubMed ID: 35536007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genome of Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, reveals new insights into the evolution of firmicutes and the organism's intracellular adaptations.
    Ogawa Y; Ooka T; Shi F; Ogura Y; Nakayama K; Hayashi T; Shimoji Y
    J Bacteriol; 2011 Jun; 193(12):2959-71. PubMed ID: 21478354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics suggests differential deployment of linear and branched signaling across bacteria.
    Seshasayee AS; Luscombe NM
    Mol Biosyst; 2011 Nov; 7(11):3042-9. PubMed ID: 21879110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of prokaryotic two-component systems: insights from comparative genomics.
    Whitworth DE; Cock PJ
    Amino Acids; 2009 Sep; 37(3):459-66. PubMed ID: 19241119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fitting the niche by genomic adaptation.
    Thomson N; Bentley S; Holden M; Parkhill J
    Nat Rev Microbiol; 2003 Nov; 1(2):92-3. PubMed ID: 15035037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities.
    Paulsen IT; Sliwinski MK; Saier MH
    J Mol Biol; 1998 Apr; 277(3):573-92. PubMed ID: 9533881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in global codon usage bias among prokaryotic organisms is associated with their lifestyles.
    Botzman M; Margalit H
    Genome Biol; 2011 Oct; 12(10):R109. PubMed ID: 22032172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological speciation in bacteria: reverse ecology approaches reveal the adaptive part of bacterial cladogenesis.
    Lassalle F; Muller D; Nesme X
    Res Microbiol; 2015 Dec; 166(10):729-41. PubMed ID: 26192210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (Actino)Bacterial "intelligence": using comparative genomics to unravel the information processing capacities of microbes.
    Pinto D; Mascher T
    Curr Genet; 2016 Aug; 62(3):487-98. PubMed ID: 26852121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of two-component systems in bacteria reveals different strategies for niche adaptation.
    Alm E; Huang K; Arkin A
    PLoS Comput Biol; 2006 Nov; 2(11):e143. PubMed ID: 17083272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The distinction of CPR bacteria from other bacteria based on protein family content.
    Méheust R; Burstein D; Castelle CJ; Banfield JF
    Nat Commun; 2019 Sep; 10(1):4173. PubMed ID: 31519891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of microbial transcriptional regulatory networks.
    Herrgård MJ; Covert MW; Palsson BØ
    Curr Opin Biotechnol; 2004 Feb; 15(1):70-7. PubMed ID: 15102470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic organization of bacterial activity.
    Morrissey EM; Mau RL; Schwartz E; Caporaso JG; Dijkstra P; van Gestel N; Koch BJ; Liu CM; Hayer M; McHugh TA; Marks JC; Price LB; Hungate BA
    ISME J; 2016 Sep; 10(9):2336-40. PubMed ID: 26943624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria.
    Barberán A; Ramirez KS; Leff JW; Bradford MA; Wall DH; Fierer N
    Ecol Lett; 2014 Jul; 17(7):794-802. PubMed ID: 24751288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics.
    Zhang D; de Souza RF; Anantharaman V; Iyer LM; Aravind L
    Biol Direct; 2012 Jun; 7():18. PubMed ID: 22731697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome trees constructed using five different approaches suggest new major bacterial clades.
    Wolf YI; Rogozin IB; Grishin NV; Tatusov RL; Koonin EV
    BMC Evol Biol; 2001 Oct; 1():8. PubMed ID: 11734060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.