BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20237672)

  • 1. Fluorescence quenched quinone methide based activity probes--a cautionary tale.
    Sellars JD; Landrum M; Congreve A; Dixon DP; Mosely JA; Beeby A; Edwards R; Steel PG
    Org Biomol Chem; 2010 Apr; 8(7):1610-8. PubMed ID: 20237672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and synthesis of an ER-specific fluorescent probe based on carboxylesterase activity with quinone methide cleavage process.
    Hakamata W; Machida A; Oku T; Nishio T
    Bioorg Med Chem Lett; 2011 Jun; 21(11):3206-9. PubMed ID: 21549595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a long-wavelength fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols.
    Huang ST; Ting KN; Wang KL
    Anal Chim Acta; 2008 Jul; 620(1-2):120-6. PubMed ID: 18558132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the preferred modification sites of the quinone methide intermediate resulting from the latent trapping device of the activity probes for hydrolases.
    Lo LC; Chiang YL; Kuo CH; Liao HK; Chen YJ; Lin JJ
    Biochem Biophys Res Commun; 2005 Jan; 326(1):30-5. PubMed ID: 15567148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Senescence-associated sialidase revealed by an activatable fluorescence-on labeling probe.
    Zhu R; Wang S; Xue Z; Han J; Han S
    Chem Commun (Camb); 2018 Oct; 54(82):11566-11569. PubMed ID: 30259042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and synthesis of an enzyme activity-based labeling molecule with fluorescence spectral change.
    Komatsu T; Kikuchi K; Takakusa H; Hanaoka K; Ueno T; Kamiya M; Urano Y; Nagano T
    J Am Chem Soc; 2006 Dec; 128(50):15946-7. PubMed ID: 17165702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quinone methide chemistry of prekinamycins: 13C-labeling, spectral global fitting and in vitro studies.
    Khdour O; Skibo EB
    Org Biomol Chem; 2009 May; 7(10):2140-54. PubMed ID: 19421453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pyridinone-methide elimination.
    Perry-Feigenbaum R; Baran PS; Shabat D
    Org Biomol Chem; 2009 Dec; 7(23):4825-8. PubMed ID: 19907770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation of LamB signal peptides in bilayers: influence of lipid probes on peptide binding and interpretation of fluorescence quenching data.
    Voglino L; Simon SA; McIntosh TJ
    Biochemistry; 1999 Jun; 38(23):7509-16. PubMed ID: 10360948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quenched autoligation probes.
    Silverman AP; Abe H; Kool ET
    Methods Mol Biol; 2008; 429():161-70. PubMed ID: 18695965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and fluorescence studies of multiple labeled oligonucleotides containing dansyl fluorophore covalently attached at 2'-terminus of cytidine via carbamate linkage.
    Misra A; Mishra S; Misra K
    Bioconjug Chem; 2004; 15(3):638-46. PubMed ID: 15149192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a specific fluorescent probe for 8-oxoguanosine.
    Ono S; Li Z; Koga Y; Tsujimoto A; Nakagawa O; Sasaki S
    Nucleic Acids Symp Ser (Oxf); 2007; (51):315-6. PubMed ID: 18029713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of electronics, aromaticity, and solvent polarity on the rate of azaquinone-methide-mediated depolymerization of aromatic carbamate oligomers.
    Robbins JS; Schmid KM; Phillips ST
    J Org Chem; 2013 Apr; 78(7):3159-69. PubMed ID: 23414397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trapping a labile adduct formed between an ortho-quinone methide and 2'-deoxycytidine.
    McCrane MP; Weinert EE; Lin Y; Mazzola EP; Lam YF; Scholl PF; Rokita SE
    Org Lett; 2011 Mar; 13(5):1186-9. PubMed ID: 21306149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemistry of pyrrolo[1,2-a]indole- and pyrido[1,2-a]indole-based quinone methides. Mechanistic explanations for differences in cytostatic/cytotoxic properties.
    Khdour O; Skibo EB
    J Org Chem; 2007 Nov; 72(23):8636-47. PubMed ID: 17927245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluorogenic probe with aggregation-induced emission characteristics for carboxylesterase assay through formation of supramolecular microfibers.
    Wang X; Liu H; Li J; Ding K; Lv Z; Yang Y; Chen H; Li X
    Chem Asian J; 2014 Mar; 9(3):784-9. PubMed ID: 24403215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quinone Methide Based Self-Immobilizing Molecular Fluorescent Probes for In Situ Imaging of Enzymes.
    Miao Y; Yu ZQ; Xu S; Yan M
    Chem Asian J; 2024 May; 19(10):e202400189. PubMed ID: 38514393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of carboxylesterase by fluorescence probe to guide detection of carbamate pesticide.
    Feng J; Gong Y; Yang S; Qiu G; Tian H; Sun B
    Luminescence; 2024 Jan; 39(1):e4625. PubMed ID: 37947027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of ratiometric near-infrared fluorescent probes using analyte-specific cleavage of carbamate.
    Zhu D; Li G; Xue L; Jiang H
    Org Biomol Chem; 2013 Jul; 11(28):4577-80. PubMed ID: 23760313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular dimers: a new design strategy for fluorescence-quenched probes.
    Johansson MK; Cook RM
    Chemistry; 2003 Aug; 9(15):3466-71. PubMed ID: 12898673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.