These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20238016)

  • 1. Ciliary transport of opsin.
    Trivedi D; Williams DS
    Adv Exp Med Biol; 2010; 664():185-91. PubMed ID: 20238016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Ciliary Targeting of Two Rhodopsin-Like GPCRs: Role of C-Terminal Localization Sequences in Relation to Cilium Type.
    Chadha A; Paniagua AE; Williams DS
    J Neurosci; 2021 Sep; 41(36):7514-7531. PubMed ID: 34301828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The route of the visual receptor rhodopsin along the cilium.
    Chadha A; Volland S; Baliaouri NV; Tran EM; Williams DS
    J Cell Sci; 2019 May; 132(10):. PubMed ID: 30975916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Live-cell imaging evidence for the ciliary transport of rod photoreceptor opsin by heterotrimeric kinesin-2.
    Trivedi D; Colin E; Louie CM; Williams DS
    J Neurosci; 2012 Aug; 32(31):10587-93. PubMed ID: 22855808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells.
    Wolfrum U; Schmitt A
    Cell Motil Cytoskeleton; 2000 Jun; 46(2):95-107. PubMed ID: 10891855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IFT20 is required for opsin trafficking and photoreceptor outer segment development.
    Keady BT; Le YZ; Pazour GJ
    Mol Biol Cell; 2011 Apr; 22(7):921-30. PubMed ID: 21307337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A FRAP-Based Method for Monitoring Molecular Transport in Ciliary Photoreceptor Cells In Vivo.
    Wunderlich KA; Wolfrum U
    Methods Mol Biol; 2016; 1454():97-106. PubMed ID: 27514918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodopsin Trafficking and Mistrafficking: Signals, Molecular Components, and Mechanisms.
    Nemet I; Ropelewski P; Imanishi Y
    Prog Mol Biol Transl Sci; 2015; 132():39-71. PubMed ID: 26055054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes.
    Haeri M; Knox BE
    PLoS One; 2012; 7(1):e30101. PubMed ID: 22276148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of ift122, a Retrograde Intraflagellar Transport (IFT) Complex Component, Leads to Slow, Progressive Photoreceptor Degeneration Due to Inefficient Opsin Transport.
    Boubakri M; Chaya T; Hirata H; Kajimura N; Kuwahara R; Ueno A; Malicki J; Furukawa T; Omori Y
    J Biol Chem; 2016 Nov; 291(47):24465-24474. PubMed ID: 27681595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern.
    Moritz OL; Tam BM; Papermaster DS; Nakayama T
    J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular complexes that direct rhodopsin transport to primary cilia.
    Wang J; Deretic D
    Prog Retin Eye Res; 2014 Jan; 38():1-19. PubMed ID: 24135424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Arf GAP ASAP1 provides a platform to regulate Arf4- and Rab11-Rab8-mediated ciliary receptor targeting.
    Wang J; Morita Y; Mazelova J; Deretic D
    EMBO J; 2012 Oct; 31(20):4057-71. PubMed ID: 22983554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct functions for IFT140 and IFT20 in opsin transport.
    Crouse JA; Lopes VS; Sanagustin JT; Keady BT; Williams DS; Pazour GJ
    Cytoskeleton (Hoboken); 2014 May; 71(5):302-10. PubMed ID: 24619649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein networks and complexes in photoreceptor cilia.
    Roepman R; Wolfrum U
    Subcell Biochem; 2007; 43():209-35. PubMed ID: 17953396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural visualization of trans-ciliary rhodopsin cargoes in mammalian rods.
    Chuang JZ; Hsu YC; Sung CH
    Cilia; 2015; 4():4. PubMed ID: 25664179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of rhodopsin-eGFP distribution in transgenic xenopus rod outer segments by light.
    Haeri M; Calvert PD; Solessio E; Pugh EN; Knox BE
    PLoS One; 2013; 8(11):e80059. PubMed ID: 24260336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis and vectorial transport of opsin on vesicles in retinal rod photoreceptors.
    Papermaster DS; Schneider BG; DeFoe D; Besharse JC
    J Histochem Cytochem; 1986 Jan; 34(1):5-16. PubMed ID: 2934469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of peripherin/rds and rom-1 transport in rod photoreceptors of transgenic and knockout animals.
    Lee ES; Burnside B; Flannery JG
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2150-60. PubMed ID: 16639027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunocytochemical localization of opsin in the cell membrane of developing rat retinal photoreceptors.
    Nir I; Cohen D; Papermaster DS
    J Cell Biol; 1984 May; 98(5):1788-95. PubMed ID: 6233288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.