BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20238053)

  • 1. Recent insights into the mechanisms underlying light-dependent retinal degeneration from X. laevis models of retinitis pigmentosa.
    Moritz OL; Tam BM
    Adv Exp Med Biol; 2010; 664():509-15. PubMed ID: 20238053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin.
    Tam BM; Moritz OL
    J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa.
    Tam BM; Moritz OL
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3234-41. PubMed ID: 16877386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light Induces Ultrastructural Changes in Rod Outer and Inner Segments, Including Autophagy, in a Transgenic Xenopus laevis P23H Rhodopsin Model of Retinitis Pigmentosa.
    Bogéa TH; Wen RH; Moritz OL
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):7947-55. PubMed ID: 26720441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa.
    Tam BM; Noorwez SM; Kaushal S; Kono M; Moritz OL
    J Neurosci; 2014 Oct; 34(40):13336-48. PubMed ID: 25274813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dependence of retinal degeneration caused by the rhodopsin P23H mutation on light exposure and vitamin a deprivation.
    Tam BM; Qazalbash A; Lee HC; Moritz OL
    Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1327-34. PubMed ID: 19933196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light.
    Zhang R; Oglesby E; Marsh-Armstrong N
    Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic
    Vent-Schmidt RYJ; Wen RH; Zong Z; Chiu CN; Tam BM; May CG; Moritz OL
    J Neurosci; 2017 Jan; 37(4):1039-1054. PubMed ID: 28490005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa.
    Parfitt DA; Aguila M; McCulley CH; Bevilacqua D; Mendes HF; Athanasiou D; Novoselov SS; Kanuga N; Munro PM; Coffey PJ; Kalmar B; Greensmith L; Cheetham ME
    Cell Death Dis; 2014 May; 5(5):e1236. PubMed ID: 24853414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration.
    Lee DC; Vazquez-Chona FR; Ferrell WD; Tam BM; Jones BW; Marc RE; Moritz OL
    J Neurosci; 2012 Feb; 32(6):2121-8. PubMed ID: 22323724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autophagy in
    Wen RH; Stanar P; Tam B; Moritz OL
    Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological Changes During Early Steps of Retinitis Pigmentosa.
    Bocchero U; Tam BM; Chiu CN; Torre V; Moritz OL
    Invest Ophthalmol Vis Sci; 2019 Mar; 60(4):933-943. PubMed ID: 30840038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mislocalized rhodopsin does not require activation to cause retinal degeneration and neurite outgrowth in Xenopus laevis.
    Tam BM; Xie G; Oprian DD; Moritz OL
    J Neurosci; 2006 Jan; 26(1):203-9. PubMed ID: 16399688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endoplasmic reticulum stress in vertebrate mutant rhodopsin models of retinal degeneration.
    Kroeger H; LaVail MM; Lin JH
    Adv Exp Med Biol; 2014; 801():585-92. PubMed ID: 24664747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic in vivo quantification of rod photoreceptor degeneration using fluorescent reporter mouse models of retinitis pigmentosa.
    Orlans HO; Barnard AR; MacLaren RE
    Exp Eye Res; 2020 Jan; 190():107895. PubMed ID: 31816293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defective trafficking of rhodopsin and its role in retinal degenerations.
    Hollingsworth TJ; Gross AK
    Int Rev Cell Mol Biol; 2012; 293():1-44. PubMed ID: 22251557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular localization of mutant P23H rhodopsin in an RFP fusion knock-in mouse model of retinitis pigmentosa.
    Robichaux MA; Nguyen V; Chan F; Kailasam L; He F; Wilson JH; Wensel TG
    Dis Model Mech; 2022 May; 15(5):. PubMed ID: 35275162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of rhodopsin mis-sorting and constitutive activation in a transgenic rat model of retinitis pigmentosa.
    Green ES; Menz MD; LaVail MM; Flannery JG
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1546-53. PubMed ID: 10798675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The severe autosomal dominant retinitis pigmentosa rhodopsin mutant Ter349Glu mislocalizes and induces rapid rod cell death.
    Hollingsworth TJ; Gross AK
    J Biol Chem; 2013 Oct; 288(40):29047-55. PubMed ID: 23940033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo dynamics of retinal injury and repair in the rhodopsin mutant dog model of human retinitis pigmentosa.
    Cideciyan AV; Jacobson SG; Aleman TS; Gu D; Pearce-Kelling SE; Sumaroka A; Acland GM; Aguirre GD
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5233-8. PubMed ID: 15784735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.