BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20238109)

  • 1. Ligand-binding assays for cyanobacterial neurotoxins targeting cholinergic receptors.
    Aráoz R; Vilariño N; Botana LM; Molgó J
    Anal Bioanal Chem; 2010 Jul; 397(5):1695-704. PubMed ID: 20238109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurotoxins in axenic oscillatorian cyanobacteria: coexistence of anatoxin-a and homoanatoxin-a determined by ligand-binding assay and GC/MS.
    Aráoz R; Nghiêm HO; Rippka R; Palibroda N; de Marsac NT; Herdman M
    Microbiology (Reading); 2005 Apr; 151(Pt 4):1263-1273. PubMed ID: 15817793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatoxins and degradation products, determined using hybrid quadrupole time-of-flight and quadrupole ion-trap mass spectrometry: forensic investigations of cyanobacterial neurotoxin poisoning.
    James KJ; Crowley J; Hamilton B; Lehane M; Skulberg O; Furey A
    Rapid Commun Mass Spectrom; 2005; 19(9):1167-75. PubMed ID: 15816010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyanobacterial toxins: biosynthetic routes and evolutionary roots.
    Dittmann E; Fewer DP; Neilan BA
    FEMS Microbiol Rev; 2013 Jan; 37(1):23-43. PubMed ID: 23051004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurotoxic cyanobacterial toxins.
    Aráoz R; Molgó J; Tandeau de Marsac N
    Toxicon; 2010 Oct; 56(5):813-28. PubMed ID: 19660486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid chromatography with electrospray ion-trap mass spectrometry for the determination of anatoxins in cyanobacteria and drinking water.
    Furey A; Crowley J; Lehane M; James KJ
    Rapid Commun Mass Spectrom; 2003; 17(6):583-8. PubMed ID: 12621621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism.
    Bourne Y; Radic Z; Aráoz R; Talley TT; Benoit E; Servent D; Taylor P; Molgó J; Marchot P
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6076-81. PubMed ID: 20224036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical and virtual screening methods for marine toxins and drug discovery targeting nicotinic acetylcholine receptors.
    Molgó J; Aráoz R; Benoit E; Iorga BI
    Expert Opin Drug Discov; 2013 Oct; 8(10):1203-23. PubMed ID: 23919818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecotoxicological effects of selected cyanobacterial secondary metabolites: a short review.
    Wiegand C; Pflugmacher S
    Toxicol Appl Pharmacol; 2005 Mar; 203(3):201-18. PubMed ID: 15737675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of cyanotoxins.
    Edwards C; Lawton LA
    Adv Appl Microbiol; 2009; 67():109-29. PubMed ID: 19245938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors.
    Tsetlin V; Utkin Y; Kasheverov I
    Biochem Pharmacol; 2009 Oct; 78(7):720-31. PubMed ID: 19501053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins.
    Testai E; Scardala S; Vichi S; Buratti FM; Funari E
    Crit Rev Toxicol; 2016; 46(5):385-419. PubMed ID: 26923223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradability and adsorption on lake sediments of cyanobacterial hepatotoxins and anatoxin-a.
    Rapala J; Lahti K; Sivonen K; Niemelä SI
    Lett Appl Microbiol; 1994 Dec; 19(6):423-8. PubMed ID: 7765705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homoanatoxin: a potent analogue of anatoxin-A.
    Wonnacott S; Swanson KL; Albuquerque EX; Huby NJ; Thompson P; Gallagher T
    Biochem Pharmacol; 1992 Feb; 43(3):419-23. PubMed ID: 1540199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Critical role of peptidic toxins in the functional and structural analysis of nicotinic acetylcholine receptors].
    Fruchart-Gaillard C; Ménez A; Servent D
    J Soc Biol; 2005; 199(1):45-53. PubMed ID: 16114263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric microtiter plate receptor-binding assay for the detection of freshwater and marine neurotoxins targeting the nicotinic acetylcholine receptors.
    Rubio F; Kamp L; Carpino J; Faltin E; Loftin K; Molgó J; Aráoz R
    Toxicon; 2014 Dec; 91():45-56. PubMed ID: 25260255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-occurrence of beta-N-methylamino-L-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990-2004.
    Metcalf JS; Banack SA; Lindsay J; Morrison LF; Cox PA; Codd GA
    Environ Microbiol; 2008 Mar; 10(3):702-8. PubMed ID: 18237305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-radioactive ligand-binding assay for detection of cyanobacterial anatoxins using Torpedo electrocyte membranes.
    Aráoz R; Herdman M; Rippka R; Ledreux A; Molgó J; Changeux JP; Tandeau de Marsac N; Nghiêm HO
    Toxicon; 2008 Jul; 52(1):163-74. PubMed ID: 18617214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility study on production of a matrix reference material for cyanobacterial toxins.
    Hollingdale C; Thomas K; Lewis N; Békri K; McCarron P; Quilliam MA
    Anal Bioanal Chem; 2015 Jul; 407(18):5353-63. PubMed ID: 25929442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance (NMR) analysis of ligand receptor interactions: the cholinergic system--a model.
    Fraenkel Y; Shalev DE; Gershoni JM; Navon G
    Crit Rev Biochem Mol Biol; 1996; 31(4):273-301. PubMed ID: 8877268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.