These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 20238147)
1. Fabrication and mechanical properties of PLLA/PCL/HA composites via a biomimetic, dip coating, and hot compression procedure. Charles LF; Shaw MT; Olson JR; Wei M J Mater Sci Mater Med; 2010 Jun; 21(6):1845-54. PubMed ID: 20238147 [TBL] [Abstract][Full Text] [Related]
2. Self-reinforced composites of hydroxyapatite-coated PLLA fibers: fabrication and mechanical characterization. Charles LF; Kramer ER; Shaw MT; Olson JR; Wei M J Mech Behav Biomed Mater; 2013 Jan; 17():269-77. PubMed ID: 23127637 [TBL] [Abstract][Full Text] [Related]
3. In vitro flexural properties of hydroxyapatite and self-reinforced poly(L-lactic acid). Wright-Charlesworth DD; King JA; Miller DM; Lim CH J Biomed Mater Res A; 2006 Sep; 78(3):541-9. PubMed ID: 16736480 [TBL] [Abstract][Full Text] [Related]
4. Influence of surface treatment and biomimetic hydroxyapatite coating on the mechanical properties of hydroxyapatite/poly(L-lactic acid) fibers. Peng F; Shaw MT; Olson JR; Wei M J Biomater Appl; 2013 Feb; 27(6):641-9. PubMed ID: 22274879 [TBL] [Abstract][Full Text] [Related]
5. Influence of pretreatment on the surface characteristics of PLLA fibers and subsequent hydroxyapatite coating. Peng F; Olson JR; Shaw MT; Wei M J Biomed Mater Res B Appl Biomater; 2009 Jan; 88(1):220-9. PubMed ID: 18683229 [TBL] [Abstract][Full Text] [Related]
6. Performance test of Nano-HA/PLLA composites for interface fixation. Zhu W; Huang J; Lu W; Sun Q; Peng L; Fen W; Li H; Ou Y; Liu H; Wang D; Zeng Y Artif Cells Nanomed Biotechnol; 2014 Oct; 42(5):331-5. PubMed ID: 23957645 [TBL] [Abstract][Full Text] [Related]
7. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Shikinami Y; Okuno M Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712 [TBL] [Abstract][Full Text] [Related]
8. Effect of diameter of poly(lactic acid) fiber on the physical properties of poly(ɛ-caprolactone). Ju D; Han L; Guo Z; Bian J; Li F; Chen S; Dong L Int J Biol Macromol; 2015 May; 76():49-57. PubMed ID: 25709010 [TBL] [Abstract][Full Text] [Related]
9. Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite. Fang Z; Feng Q Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():190-4. PubMed ID: 24411368 [TBL] [Abstract][Full Text] [Related]
10. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Kim HW; Knowles JC; Kim HE Biomaterials; 2004; 25(7-8):1279-87. PubMed ID: 14643602 [TBL] [Abstract][Full Text] [Related]
11. Effect of hydroxyapatite concentration on high-modulus composite for biodegradable bone-fixation devices. Heimbach B; Grassie K; Shaw MT; Olson JR; Wei M J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1963-1971. PubMed ID: 27300308 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering. Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976 [TBL] [Abstract][Full Text] [Related]
13. Hydroxyapatite (HA)/poly-L-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications. Diez M; Kang MH; Kim SM; Kim HE; Song J J Mater Sci Mater Med; 2016 Feb; 27(2):34. PubMed ID: 26704551 [TBL] [Abstract][Full Text] [Related]
14. Mechanical study of polycaprolactone-hydroxyapatite porous scaffolds created by porogen-based solid freeform fabrication method. Lu L; Zhang Q; Wootton DM; Chiou R; Li D; Lu B; Lelkes PI; Zhou J J Appl Biomater Funct Mater; 2014 Dec; 12(3):145-54. PubMed ID: 24425377 [TBL] [Abstract][Full Text] [Related]
15. Chemical-physical and preliminary biological properties of poly (2-hydroxyethylmethacrylate)/poly-(epsilon-caprolactone)/hydroxyapa- tite composite. Giordano C; Causa F; Silvio LD; Ambrosio L J Mater Sci Mater Med; 2007 Apr; 18(4):653-60. PubMed ID: 17546428 [TBL] [Abstract][Full Text] [Related]
16. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Patlolla A; Collins G; Arinzeh TL Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769 [TBL] [Abstract][Full Text] [Related]
17. Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation. Flauder S; Sajzew R; Müller FA ACS Appl Mater Interfaces; 2015 Jan; 7(1):845-51. PubMed ID: 25474730 [TBL] [Abstract][Full Text] [Related]
18. FEM modeling of the reinforcement mechanism of Hydroxyapatite in PLLA scaffolds produced by supercritical drying, for Tissue Engineering applications. Baldino L; Naddeo F; Cardea S; Naddeo A; Reverchon E J Mech Behav Biomed Mater; 2015 Nov; 51():225-36. PubMed ID: 26275485 [TBL] [Abstract][Full Text] [Related]
19. Preparation and properties of poly(L-lactide)/hydroxyapatite composites. Kesenci K; Fambri L; Migliaresi C; Pişkin E J Biomater Sci Polym Ed; 2000; 11(6):617-32. PubMed ID: 10981677 [TBL] [Abstract][Full Text] [Related]
20. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials. Allo BA; Rizkalla AS; Mequanint K ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]