These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 20238149)

  • 1. Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use.
    Lai JY
    J Mater Sci Mater Med; 2010 Jun; 21(6):1899-911. PubMed ID: 20238149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocular biocompatibility of carbodiimide cross-linked hyaluronic acid hydrogels for cell sheet delivery carriers.
    Lai JY; Ma DH; Cheng HY; Sun CC; Huang SJ; Li YT; Hsiue GH
    J Biomater Sci Polym Ed; 2010; 21(3):359-76. PubMed ID: 20178691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Cross-Linker Concentration on the Functionality of Carbodiimide Cross-Linked Gelatin Membranes for Retinal Sheet Carriers.
    Lai JY; Li YT
    J Biomater Sci Polym Ed; 2011; 22(1-3):277-95. PubMed ID: 20557713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles: characterization and interaction with corneal endothelial cells.
    Lu PL; Lai JY; Ma DH; Hsiue GH
    J Biomater Sci Polym Ed; 2008; 19(1):1-18. PubMed ID: 18177550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials in the anterior chamber of the eye.
    Lai JY
    Int J Mol Sci; 2012; 13(9):10970-10985. PubMed ID: 23109832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers.
    Lai JY; Li YT
    Biomacromolecules; 2010 May; 11(5):1387-97. PubMed ID: 20355704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gelatin hydrogels: enhanced biocompatibility, drug release and cell viability.
    Rathna GV
    J Mater Sci Mater Med; 2008 Jun; 19(6):2351-8. PubMed ID: 18157687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials.
    Chou SF; Luo LJ; Lai JY; Ma DH
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1145-1155. PubMed ID: 27987671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods.
    Yang G; Xiao Z; Long H; Ma K; Zhang J; Ren X; Zhang J
    Sci Rep; 2018 Jan; 8(1):1616. PubMed ID: 29371676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ocular biocompatibility of gelatin microcarriers functionalized with oxidized hyaluronic acid.
    Lai JY; Ma DH
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():150-159. PubMed ID: 28024571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of solvent composition on the performance of carbodiimide cross-linked gelatin carriers for retinal sheet delivery.
    Lai JY
    J Mater Sci Mater Med; 2013 Sep; 24(9):2201-10. PubMed ID: 23677435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and mechanical properties of double cross-linked gelatin-graphene oxide hydrogels.
    Piao Y; Chen B
    Int J Biol Macromol; 2017 Aug; 101():791-798. PubMed ID: 28365284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A methodology based on the "anterior chamber of rabbit eyes" model for noninvasively determining the biocompatibility of biomaterials in an immune privileged site.
    Lu PL; Lai JY; Tabata Y; Hsiue GH
    J Biomed Mater Res A; 2008 Jul; 86(1):108-16. PubMed ID: 17941023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo biocompatibility of gelatin-based hydrogels and interpenetrating networks.
    Stevens KR; Einerson NJ; Burmania JA; Kao WJ
    J Biomater Sci Polym Ed; 2002; 13(12):1353-66. PubMed ID: 12555901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of gelatin-hyaluronic acid composite hydrogels for accelerating wound healing.
    Wu S; Deng L; Hsia H; Xu K; He Y; Huang Q; Peng Y; Zhou Z; Peng C
    J Biomater Appl; 2017 May; 31(10):1380-1390. PubMed ID: 28376672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves.
    Kuijpers AJ; van Wachem PB; van Luyn MJ; Engbers GH; Krijgsveld J; Zaat SA; Dankert J; Feijen J
    J Control Release; 2000 Jul; 67(2-3):323-36. PubMed ID: 10825564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular Response to Reagent-Free Electron-Irradiated Gelatin Hydrogels.
    Wisotzki EI; Friedrich RP; Weidt A; Alexiou C; Mayr SG; Zink M
    Macromol Biosci; 2016 Jun; 16(6):914-24. PubMed ID: 26937853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gelatin-based biomaterial engineering with anhydride-containing oligomeric cross-linkers.
    Loth T; Hötzel R; Kascholke C; Anderegg U; Schulz-Siegmund M; Hacker MC
    Biomacromolecules; 2014 Jun; 15(6):2104-18. PubMed ID: 24806218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties and biocompatibility of in situ enzymatically cross-linked gelatin hydrogels.
    Alarake NZ; Frohberg P; Groth T; Pietzsch M
    Int J Artif Organs; 2017 May; 40(4):159-168. PubMed ID: 28315501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbodiimide cross-linked amniotic membranes for cultivation of limbal epithelial cells.
    Ma DH; Lai JY; Cheng HY; Tsai CC; Yeh LK
    Biomaterials; 2010 Sep; 31(25):6647-58. PubMed ID: 20541801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.