These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20238272)

  • 1. A detailed protocol for chromatin immunoprecipitation in the yeast Saccharomyces cerevisiae.
    Grably M; Engelberg D
    Methods Mol Biol; 2010; 638():211-24. PubMed ID: 20238272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin immunoprecipitation to study protein-DNA interactions in budding yeast.
    Ezhkova E; Tansey WP
    Methods Mol Biol; 2006; 313():225-44. PubMed ID: 16118437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Faster and easier chromatin immunoprecipitation assay with high sensitivity.
    Kohzaki H; Murakami Y
    Proteomics; 2007 Jan; 7(1):10-4. PubMed ID: 17152093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of protein-DNA association in vivo by chromatin immunoprecipitation.
    Kuras L
    Methods Mol Biol; 2004; 284():147-62. PubMed ID: 15173614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using chromatin immunoprecipitation to map cotranscriptional mRNA processing in Saccharomyces cerevisiae.
    Keogh MC; Buratowski S
    Methods Mol Biol; 2004; 257():1-16. PubMed ID: 14769992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping genomic targets of DNA helicases by chromatin immunoprecipitation in Saccharomyces cerevisiae.
    Cobb J; van Attikum H
    Methods Mol Biol; 2010; 587():113-26. PubMed ID: 20225145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of protein-DNA interactions by in vivo chromatin immunoprecipitation in yeast.
    Pascual-Ahuir A; Proft M
    Methods Mol Biol; 2012; 809():149-56. PubMed ID: 22113274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part A: ChIP-chip molecular methods.
    Reimer JJ; Turck F
    Methods Mol Biol; 2010; 631():139-60. PubMed ID: 20204874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved genome-wide localization by ChIP-chip using double-round T7 RNA polymerase-based amplification.
    van Bakel H; van Werven FJ; Radonjic M; Brok MO; van Leenen D; Holstege FC; Timmers HT
    Nucleic Acids Res; 2008 Mar; 36(4):e21. PubMed ID: 18180247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling genome-wide histone modifications and variants by ChIP-chip on tiling microarrays in S. cerevisiae.
    Bataille AR; Robert F
    Methods Mol Biol; 2009; 543():267-79. PubMed ID: 19378172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo.
    Aparicio O; Geisberg JV; Struhl K
    Curr Protoc Cell Biol; 2004 Sep; Chapter 17():Unit 17.7. PubMed ID: 18228445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rapid micro chromatin immunoprecipitation assay (microChIP).
    Dahl JA; Collas P
    Nat Protoc; 2008; 3(6):1032-45. PubMed ID: 18536650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of TBP binding by activators and general transcription factors.
    Li XY; Virbasius A; Zhu X; Green MR
    Nature; 1999 Jun; 399(6736):605-9. PubMed ID: 10376604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studying repair of a single protein-bound nick in vivo using the Flp-nick system.
    Nielsen I; Andersen AH; Bjergbæk L
    Methods Mol Biol; 2012; 920():393-415. PubMed ID: 22941619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of biotin tagging in Saccharomyces cerevisiae improves the sensitivity of chromatin immunoprecipitation.
    van Werven FJ; Timmers HT
    Nucleic Acids Res; 2006 Feb; 34(4):e33. PubMed ID: 16500888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of protein-DNA interactions in vivo by chromatin immunoprecipitation.
    Im H; Grass JA; Johnson KD; Boyer ME; Wu J; Bresnick EH
    Methods Mol Biol; 2004; 284():129-46. PubMed ID: 15173613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA interstrand cross-link repair in Saccharomyces cerevisiae.
    Lehoczký P; McHugh PJ; Chovanec M
    FEMS Microbiol Rev; 2007 Mar; 31(2):109-33. PubMed ID: 17096663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment.
    Kim J; Bhinge AA; Morgan XC; Iyer VR
    Nat Methods; 2005 Jan; 2(1):47-53. PubMed ID: 15782160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel in vivo targets of DeltaNp63 in keratinocytes identified by a modified chromatin immunoprecipitation approach.
    Birkaya B; Ortt K; Sinha S
    BMC Mol Biol; 2007 May; 8():43. PubMed ID: 17521434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory factors controlling transcription of Saccharomyces cerevisiae IXR1 by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating ROX1 and IXR1 cross-regulation.
    Castro-Prego R; Lamas-Maceiras M; Soengas P; Carneiro I; González-Siso I; Cerdán ME
    Biochem J; 2009 Dec; 425(1):235-43. PubMed ID: 19807692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.