These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 20238279)

  • 1. Split-EGFP screens for the detection and localisation of protein-protein interactions in living yeast cells.
    Barnard E; Timson DJ
    Methods Mol Biol; 2010; 638():303-17. PubMed ID: 20238279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and localisation of protein-protein interactions in Saccharomyces cerevisiae using a split-GFP method.
    Barnard E; McFerran NV; Trudgett A; Nelson J; Timson DJ
    Fungal Genet Biol; 2008 May; 45(5):597-604. PubMed ID: 18313953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The GAL genetic switch: visualisation of the interacting proteins by split-EGFP bimolecular fluorescence complementation.
    Barnard E; Timson DJ
    J Basic Microbiol; 2011 Jun; 51(3):312-7. PubMed ID: 21298679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and implementation of split-GFP-based bimolecular fluorescence complementation (BiFC) assays in yeast.
    Barnard E; McFerran NV; Trudgett A; Nelson J; Timson DJ
    Biochem Soc Trans; 2008 Jun; 36(Pt 3):479-82. PubMed ID: 18481985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Saccharomyces cerevisiae Wss1 protein is only present in mother cells.
    van Heusden GP; Steensma HY
    FEMS Microbiol Lett; 2008 May; 282(1):100-4. PubMed ID: 18336552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between the budding yeast IQGAP homologue Iqg1p and its targets revealed by a split-EGFP bimolecular fluorescence complementation assay.
    Pathmanathan S; Barnard E; Timson DJ
    Cell Biol Int; 2008 Oct; 32(10):1318-22. PubMed ID: 18675924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics: where's Waldo in yeast?
    Wohlschlegel JA; Yates JR
    Nature; 2003 Oct; 425(6959):671-2. PubMed ID: 14562083
    [No Abstract]   [Full Text] [Related]  

  • 8. Global analysis of protein localization in budding yeast.
    Huh WK; Falvo JV; Gerke LC; Carroll AS; Howson RW; Weissman JS; O'Shea EK
    Nature; 2003 Oct; 425(6959):686-91. PubMed ID: 14562095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of membrane protein complexes using the split-ubiquitin membrane yeast two-hybrid (MYTH) system.
    Kittanakom S; Chuk M; Wong V; Snyder J; Edmonds D; Lydakis A; Zhang Z; Auerbach D; Stagljar I
    Methods Mol Biol; 2009; 548():247-71. PubMed ID: 19521829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPLIFF: A Single-Cell Method to Map Protein-Protein Interactions in Time and Space.
    Dünkler A; Rösler R; Kestler HA; Moreno-Andrés D; Johnsson N
    Methods Mol Biol; 2015; 1346():151-68. PubMed ID: 26542721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-fragment complementation assays for large-scale analysis, functional dissection and dynamic studies of protein-protein interactions in living cells.
    Michnick SW; Ear PH; Landry C; Malleshaiah MK; Messier V
    Methods Mol Biol; 2011; 756():395-425. PubMed ID: 21870242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gγ recruitment system incorporating a novel signal amplification circuit to screen transient protein-protein interactions.
    Fukuda N; Ishii J; Kondo A
    FEBS J; 2011 Sep; 278(17):3086-94. PubMed ID: 21740518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast two-hybrid screening.
    Maple J; Møller SG
    Methods Mol Biol; 2007; 362():207-23. PubMed ID: 17417012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo quantification of protein-protein interactions in Saccharomyces cerevisiae using bimolecular fluorescence complementation assay.
    Sung MK; Huh WK
    J Microbiol Methods; 2010 Nov; 83(2):194-201. PubMed ID: 20828586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid method to determine the stress status of Saccharomyces cerevisiae by monitoring the expression of a Hsp12:green fluorescent protein (GFP) construct under the control of the Hsp12 promoter.
    Karreman RJ; Lindsey GG
    J Biomol Screen; 2005 Apr; 10(3):253-9. PubMed ID: 15809321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of yeast by infectious prion particles.
    King CY; Wang HL; Chang HY
    Methods; 2006 May; 39(1):68-71. PubMed ID: 16759879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimolecular fluorescence complementation (BiFC) technique in yeast Saccharomyces cerevisiae and mammalian cells.
    Weber-Boyvat M; Li S; Skarp KP; Olkkonen VM; Yan D; Jäntti J
    Methods Mol Biol; 2015; 1270():277-88. PubMed ID: 25702124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-surface modification of non-GMO without chemical treatment by novel GMO-coupled and -separated cocultivation method.
    Miura N; Aoki W; Tokumoto N; Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):293-301. PubMed ID: 19039583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions.
    Galarneau A; Primeau M; Trudeau LE; Michnick SW
    Nat Biotechnol; 2002 Jun; 20(6):619-22. PubMed ID: 12042868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing yeast protein-protein interaction data obtained from different sources.
    Bader GD; Hogue CW
    Nat Biotechnol; 2002 Oct; 20(10):991-7. PubMed ID: 12355115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.