BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 20238419)

  • 1. A state space representation of VAR models with sparse learning for dynamic gene networks.
    Kojima K; Yamaguchi R; Imoto S; Yamauchi M; Nagasaki M; Yoshida R; Shimamura T; Ueno K; Higuchi T; Gotoh N; Miyano S
    Genome Inform; 2010 Jan; 22():56-68. PubMed ID: 20238419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying regulational alterations in gene regulatory networks by state space representation of vector autoregressive models and variational annealing.
    Kojima K; Imoto S; Yamaguchi R; Fujita A; Yamauchi M; Gotoh N; Miyano S
    BMC Genomics; 2012; 13 Suppl 1(Suppl 1):S6. PubMed ID: 22369122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collocation-based sparse estimation for constructing dynamic gene networks.
    Shimamura T; Imoto S; Nagasaki M; Yamauchi M; Yamaguchi R; Fujita A; Tamada Y; Gotoh N; Miyano S
    Genome Inform; 2010; 24():164-78. PubMed ID: 22081598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data.
    Shimamura T; Imoto S; Yamaguchi R; Miyano S
    Genome Inform; 2007; 19():142-53. PubMed ID: 18546512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting differences in gene regulatory systems by state space models.
    Yamaguchi R; Imoto S; Yamauchi M; Nagasaki M; Yoshida R; Shimamura T; Hatanaka Y; Ueno K; Higuchi T; Gotoh N; Miyano S
    Genome Inform; 2008; 21():101-13. PubMed ID: 19425151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models.
    Hirose O; Yoshida R; Imoto S; Yamaguchi R; Higuchi T; Charnock-Jones DS; Print C; Miyano S
    Bioinformatics; 2008 Apr; 24(7):932-42. PubMed ID: 18292116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of biochemical networks by S-tree based genetic programming.
    Cho DY; Cho KH; Zhang BT
    Bioinformatics; 2006 Jul; 22(13):1631-40. PubMed ID: 16585066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of nonlinear gene regulatory networks via L1 regularized NVAR from time series gene expression data.
    Kojima K; Fujita A; Shimamura T; Imoto S; Miyano S
    Genome Inform; 2008; 20():37-51. PubMed ID: 19425121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast calculation of pairwise mutual information for gene regulatory network reconstruction.
    Qiu P; Gentles AJ; Plevritis SK
    Comput Methods Programs Biomed; 2009 May; 94(2):177-80. PubMed ID: 19167129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic dynamic modeling of short gene expression time-series data.
    Wang Z; Yang F; Ho DW; Swift S; Tucker A; Liu X
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):44-55. PubMed ID: 18334455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of bypass signaling in EGFR pathway and profiling of bypass genes for predicting response to anticancer EGFR tyrosine kinase inhibitors.
    Zhang J; Jia J; Zhu F; Ma X; Han B; Wei X; Tan C; Jiang Y; Chen Y
    Mol Biosyst; 2012 Oct; 8(10):2645-56. PubMed ID: 22833077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new multiple regression approach for the construction of genetic regulatory networks.
    Zhang SQ; Ching WK; Tsing NK; Leung HY; Guo D
    Artif Intell Med; 2010; 48(2-3):153-60. PubMed ID: 19963359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method.
    Fujita A; Sato JR; Garay-Malpartida HM; Morettin PA; Sogayar MC; Ferreira CE
    Bioinformatics; 2007 Jul; 23(13):1623-30. PubMed ID: 17463021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene selection in cancer classification using sparse logistic regression with Bayesian regularization.
    Cawley GC; Talbot NL
    Bioinformatics; 2006 Oct; 22(19):2348-55. PubMed ID: 16844704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data.
    Zou M; Conzen SD
    Bioinformatics; 2005 Jan; 21(1):71-9. PubMed ID: 15308537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Markovian approach to the control of genetic regulatory networks.
    Chen PC; Chen JW
    Biosystems; 2007; 90(2):535-45. PubMed ID: 17320274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antitumor activity of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib (ZD1839, Iressa) in non-small cell lung cancer cell lines correlates with gene copy number and EGFR mutations but not EGFR protein levels.
    Helfrich BA; Raben D; Varella-Garcia M; Gustafson D; Chan DC; Bemis L; Coldren C; BarĂ³n A; Zeng C; Franklin WA; Hirsch FR; Gazdar A; Minna J; Bunn PA
    Clin Cancer Res; 2006 Dec; 12(23):7117-25. PubMed ID: 17145836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating sparse gene regulatory networks using a bayesian linear regression.
    Sarder P; Schierding W; Cobb JP; Nehorai A
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):121-31. PubMed ID: 20650703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparse time series chain graphical models for reconstructing genetic networks.
    Abegaz F; Wit E
    Biostatistics; 2013 Jul; 14(3):586-99. PubMed ID: 23462022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epidermal growth factor receptor mutations are associated with gefitinib sensitivity in non-small cell lung cancer in Japanese.
    Uramoto H; Sugio K; Oyama T; Ono K; Sugaya M; Yoshimatsu T; Hanagiri T; Morita M; Yasumoto K
    Lung Cancer; 2006 Jan; 51(1):71-7. PubMed ID: 16198442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.