These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20238428)

  • 21. On the relationship between pinning control effectiveness and graph topology in complex networks of dynamical systems.
    Wu CW
    Chaos; 2008 Sep; 18(3):037103. PubMed ID: 19045477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fitting a geometric graph to a protein-protein interaction network.
    Higham DJ; Rasajski M; Przulj N
    Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using support vector machines for prediction of protein structural classes based on discrete wavelet transform.
    Qiu JD; Luo SH; Huang JH; Liang RP
    J Comput Chem; 2009 Jun; 30(8):1344-50. PubMed ID: 19009604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrating support vector machines and neural networks.
    Capparuccia R; De Leone R; Marchitto E
    Neural Netw; 2007 Jul; 20(5):590-7. PubMed ID: 17306960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flux networks in metabolic graphs.
    Warren PB; Queiros SM; Jones JL
    Phys Biol; 2009 Sep; 6(4):046006. PubMed ID: 19773605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic systems cost-benefit analysis for interpreting network structure and regulation.
    Carlson RP
    Bioinformatics; 2007 May; 23(10):1258-64. PubMed ID: 17344237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An environmental perspective on metabolism.
    Handorf T; Christian N; Ebenhöh O; Kahn D
    J Theor Biol; 2008 Jun; 252(3):530-7. PubMed ID: 18086477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Support vector machines for prediction of protein subcellular location.
    Cai YD; Liu XJ; Xu XB; Chou KC
    Mol Cell Biol Res Commun; 2000 Oct; 4(4):230-3. PubMed ID: 11409917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient estimation of graphlet frequency distributions in protein-protein interaction networks.
    Przulj N; Corneil DG; Jurisica I
    Bioinformatics; 2006 Apr; 22(8):974-80. PubMed ID: 16452112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Observing local and global properties of metabolic pathways: 'load points' and 'choke points' in the metabolic networks.
    Rahman SA; Schomburg D
    Bioinformatics; 2006 Jul; 22(14):1767-74. PubMed ID: 16682421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity-dependent model of protein-protein interaction networks.
    Zhang J; Shakhnovich EI
    Phys Biol; 2008 Sep; 5(3):036011. PubMed ID: 18824789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Representation, simulation, and hypothesis generation in graph and logical models of biological networks.
    Whelan K; Ray O; King RD
    Methods Mol Biol; 2011; 759():465-82. PubMed ID: 21863503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An algorithm for efficient identification of branched metabolic pathways.
    Heath AP; Bennett GN; Kavraki LE
    J Comput Biol; 2011 Nov; 18(11):1575-97. PubMed ID: 21999288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dimensionality reduction and spectral properties of multilayer networks.
    Sánchez-García RJ; Cozzo E; Moreno Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052815. PubMed ID: 25353852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying the starting point of a spreading process in complex networks.
    Comin CH; Costa Lda F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056105. PubMed ID: 22181471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalytic reaction dynamics in inhomogeneous networks.
    Watanabe A; Yakubo K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052806. PubMed ID: 25353843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional properties of spatially embedded scale-free networks.
    Emmerich T; Bunde A; Havlin S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062806. PubMed ID: 25019832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From the betweenness centrality in street networks to structural invariants in random planar graphs.
    Kirkley A; Barbosa H; Barthelemy M; Ghoshal G
    Nat Commun; 2018 Jun; 9(1):2501. PubMed ID: 29950619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast computing betweenness centrality with virtual nodes on large sparse networks.
    Yang J; Chen Y
    PLoS One; 2011; 6(7):e22557. PubMed ID: 21818337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Network motif frequency vectors reveal evolving metabolic network organisation.
    Pearcy N; Crofts JJ; Chuzhanova N
    Mol Biosyst; 2015 Jan; 11(1):77-85. PubMed ID: 25325903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.