BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 2023908)

  • 21. Light-dependent change of cone-horizontal cell interactions in carp retina.
    Weiler R; Wagner HJ
    Brain Res; 1984 Apr; 298(1):1-9. PubMed ID: 6326947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Haloperidol suppresses light-induced spinule formation and biphasic responses of horizontal cells in fish (roach) retina.
    Djamgoz MB; Kirsch M; Wagner HJ
    Neurosci Lett; 1989 Dec; 107(1-3):200-4. PubMed ID: 2616031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Volume transmission of dopamine may modulate light-adaptive plasticity of horizontal cell dendrites in the recovery phase following dopamine depletion in goldfish retina.
    Yazulla S; Studholme KM
    Vis Neurosci; 1995; 12(5):827-36. PubMed ID: 8924407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptic plasticity and functionality at the cone terminal of the developing zebrafish retina.
    Biehlmaier O; Neuhauss SC; Kohler K
    J Neurobiol; 2003 Sep; 56(3):222-36. PubMed ID: 12884262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interocular effect of actin depolymerization on spinule formation in teleost retina.
    De Juan J; GarcĂ­a M
    Brain Res; 1998 May; 792(1):173-7. PubMed ID: 9593881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endogenous dopamine and cyclic events in the fish retina, II: Correlation of retinomotor movement, spinule formation, and connexon density of gap junctions with dopamine activity during light/dark cycles.
    Kohler K; Kolbinger W; Kurz-Isler G; Weiler R
    Vis Neurosci; 1990 Nov; 5(5):417-28. PubMed ID: 2288893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of melatonin agonists and antagonists on horizontal cell spinule formation and dopamine release in a fish retina.
    Behrens UD; Douglas RH; Sugden D; Davies DJ; Wagner HJ
    Cell Tissue Res; 2000 Mar; 299(3):299-306. PubMed ID: 10772244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nerve growth factor induces light adaptive cellular and synaptic plasticity in the outer retina of fish.
    Haamedi SN; Karten HJ; Djamgoz MB
    J Comp Neurol; 2001 Mar; 431(4):397-404. PubMed ID: 11223810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retinoic acid has light-adaptive effects on horizontal cells in the retina.
    Weiler R; Schultz K; Pottek M; Tieding S; Janssen-Bienhold U
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):7139-44. PubMed ID: 9618552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasticity of cone horizontal cell functioning in cyprinid fish retina: effects of background illumination of moderate intensity.
    Djamgoz MB; Downing JE; Kirsch M; Prince DJ; Wagner HJ
    J Neurocytol; 1988 Oct; 17(5):701-10. PubMed ID: 3210048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro phosphorylation in isolated horizontal cells of the fish retina: effects of the state of light adaptation.
    Janssen-Bienhold U; Nagel H; Weiler R
    Eur J Neurosci; 1993 Jun; 5(6):584-93. PubMed ID: 8261133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effects of prolonged darkness and background illumination on cone horizontal cells in carp retina: a correlative study of morphology and physiology].
    Zhang J; Song XE; Wang HH; Yang XL
    Sheng Li Xue Bao; 1992 Apr; 44(2):155-63. PubMed ID: 1320293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spinule formulation in the fish retina: is there an involvement of actin and tubulin? An electronmicroscopic immunogold study.
    Schmitz Y; Kohler K
    J Neurocytol; 1993 Mar; 22(3):205-14. PubMed ID: 8478642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light-dependent plasticity of the morphology of horizontal cell terminals in cone pedicles of fish retinas.
    Wagner HJ
    J Neurocytol; 1980 Oct; 9(5):573-90. PubMed ID: 7441304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phorbol ester binding sites in the fish retina: correlation with stimulation of endogenous phosphorylation and protein kinase C activation.
    Janssen-Bienhold U; Buschmann-Gebhardt B; Weiler R
    J Neurochem; 1995 Aug; 65(2):744-53. PubMed ID: 7616231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium and protein kinase C regulate the actin cytoskeleton in the synaptic terminal of retinal bipolar cells.
    Job C; Lagnado L
    J Cell Biol; 1998 Dec; 143(6):1661-72. PubMed ID: 9852158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light adaptation affects synaptic vesicle density but not the distribution of GABAA receptors in goldfish photoreceptor terminals.
    Yazulla S; Studholme KM
    Microsc Res Tech; 1997 Jan; 36(1):43-56. PubMed ID: 9031260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of retinoic acid neuromodulation in the carp retina.
    Dirks P; Tieding S; Schneider I; Mey J; Weiler R
    J Neurosci Res; 2004 Oct; 78(2):177-85. PubMed ID: 15378613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphologic changes in teleost primary and secondary retinal cells following brief exposure to light.
    Wagner HJ; Douglas RH
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):24-9. PubMed ID: 6826311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitric oxide induces light-adaptive morphological changes in retinal neurones.
    Greenstreet EH; Djamgoz MB
    Neuroreport; 1994 Dec; 6(1):109-12. PubMed ID: 7703396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.