BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 202413)

  • 1. Guanosine 3',5'-monophosphate and the action of alkylating agents.
    Tisdale MJ; Phillips BJ
    Chem Biol Interact; 1977 Dec; 19(3):375-81. PubMed ID: 202413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in adenosine 3', 5'-monophosphate-binding protein in Walker carcinoma cells sensitive or resistant to alkylating agents.
    Tisdale MJ; Phillips BJ
    Biochem Pharmacol; 1976 Aug; 25(16):1831-6. PubMed ID: 9089
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of alkylating agents on the activity of adenosine 3',5'-monophosphate-dependent protein kinase in Walker carcinoma cells.
    Tisdale MJ; Phillips BJ
    Biochem Pharmacol; 1976 Nov; 25(21):2365-70. PubMed ID: 187201
    [No Abstract]   [Full Text] [Related]  

  • 4. Selective inhibition of ribonucleotide reductase by the monofunctional alkylating agent 5(1-aziridinyl)-2,4-dinitrobenzamide (CB 1954).
    Tisdale MJ; Habberfield AD
    Biochem Pharmacol; 1980 Oct; 29(20):2845-53. PubMed ID: 7002161
    [No Abstract]   [Full Text] [Related]  

  • 5. Cyclic nucleotide metabolism in Walker carcinoma cells resistant to alkylating agents.
    Tisdale MJ; Phillips BJ
    Biochem Pharmacol; 1978 Mar; 27(6):947-52. PubMed ID: 207283
    [No Abstract]   [Full Text] [Related]  

  • 6. Comparative effects of alkylating agents and other anti-tumour agents on the intracellular level of adenosine 3',5'-monophosphate in Walker carcinoma.
    Tisdale MJ; Phillips BJ
    Biochem Pharmacol; 1975 Jul; 24(13-14):1271-6. PubMed ID: 167787
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on the mechanism of action of 5-aziridinyl-2, 4-dinitrobenzamide in tumor cells.
    Mandel HG; Connors TA; Melzack DH; Merai K
    Cancer Res; 1974 Feb; 34(2):275-80. PubMed ID: 4855748
    [No Abstract]   [Full Text] [Related]  

  • 8. Inhibition of cyclic 3',5'-nucleotide phosphodiesterase-a possible mechanism of action of bifunctional alkylating agents.
    Tisdale MJ; Phillips BJ
    Biochem Pharmacol; 1975 Jan; 24(2):211-7. PubMed ID: 163094
    [No Abstract]   [Full Text] [Related]  

  • 9. Relationships between chemotaxis, chemotactic modulators, and cyclic nucleotide levels in tumor cells.
    Mokashi S; Delikatny SJ; Orr FW
    Cancer Res; 1983 May; 43(5):1980-3. PubMed ID: 6299536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of alkylating agents on adenosine 3',5'-monophosphate metabolism in Walker carcinoma.
    Tisdale MJ; Phillips BJ
    Biochem Pharmacol; 1976 Aug; 25(15):1793-7. PubMed ID: 182174
    [No Abstract]   [Full Text] [Related]  

  • 11. Variations in cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate content and efflux from the photosensitive pineal organ of the pike in culture.
    Falcón J; Gaildrat P
    Pflugers Arch; 1997 Jan; 433(3):336-42. PubMed ID: 9064650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CB 1954 (2,4-dinitro-5-aziridinyl benzamide) becomes a DNA interstrand crosslinking agent in Walker tumour cells.
    Roberts JJ; Friedlos F; Knox RJ
    Biochem Biophys Res Commun; 1986 Nov; 140(3):1073-8. PubMed ID: 3778483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine 3',5'-monophosphate phosphodiesterase activity in experimental animal tumours which are either sensitive or resistant to bifunctional alkylating agents.
    Tisdale MJ; Phillips BJ
    Biochem Pharmacol; 1975 Jan; 24(2):205-10. PubMed ID: 163093
    [No Abstract]   [Full Text] [Related]  

  • 14. Cyclophosphamide, 2,2-dimethylaziridines and other alkylating agents as inhibitors of serum cholinesterase.
    Lalka D; Bardos TJ
    Biochem Pharmacol; 1975 Feb; 24(4):455-6. PubMed ID: 1167458
    [No Abstract]   [Full Text] [Related]  

  • 15. Glycine receptor in hippocampal neurons as a target for action of extracellular cyclic nucleotides.
    Bukanova JV; Solntseva EI; Kondratenko RV; Skrebitsky VG
    Neurosci Lett; 2014 Feb; 561():58-63. PubMed ID: 24373992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-dependent regulation of guanosine 3',5'-monophosphate in renal cortex: effects of ionophore A23187 and tetracaine and evidence for independent control of adenosine 3',5'-monophosphate.
    DeRubertis FR; Craven PA
    Metabolism; 1976 Oct; 25(10):1113-27. PubMed ID: 184365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of cyclic nucleotides with proteins in malignant and adenosine cyclic 3':5'-monophosphate-induced "differentiated" neuroblastoma cells in culture.
    Prasad KN; Sinha PK; Sahu SK; Brown JL
    Cancer Res; 1976 Jul; 36(7 PT 1):2290-6. PubMed ID: 179701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An equilibrium study of the cooperative binding of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate to the adenosine cyclic 3',5'-monophosphate receptor protein from Escherichia coli.
    Takahashi M; Blazy B; Baudras A
    Biochemistry; 1980 Oct; 19(22):5124-30. PubMed ID: 6257276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of cyclic AMP- and cyclic GMP-phosphodiesterases in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta. A study with selective inhibitors.
    Schoeffter P; Lugnier C; Demesy-Waeldele F; Stoclet JC
    Biochem Pharmacol; 1987 Nov; 36(22):3965-72. PubMed ID: 2825708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential alterations in the hepatic content and metabolism of cyclic AMP and cyclic GMP induced by DL-ethionine: evidence for malignant transformation of liver with a sustained increase in cyclic AMP.
    DeRubertis FR; Craven PA
    Metabolism; 1976 Dec; 25(12):1611-25. PubMed ID: 186692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.