BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 202432)

  • 1. Biochemical background of atherosclerotic heart lesion in an experiment.
    Gilmiyarova FN; Sidorenkov IV; Radomskaya AM; Shpigel AS
    Cor Vasa; 1977; 19(4-5):355-62. PubMed ID: 202432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The function of shuttle systems of liver extramitochondrial hydrogen transport in experimental atherosclerosis].
    Gil'miyairova FN; Radomskaya VM
    Vopr Med Khim; 1975; 21(5):476-80. PubMed ID: 3020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of malate dehydrogenase and NADH channelling to complex I.
    Ovádi J; Huang Y; Spivey HO
    J Mol Recognit; 1994 Dec; 7(4):265-72. PubMed ID: 7734152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myoglobin redox form stabilization by compartmentalized lactate and malate dehydrogenases.
    Mohan A; Hunt MC; Muthukrishnan S; Barstow TJ; Houser TA
    J Agric Food Chem; 2010 Jun; 58(11):7021-9. PubMed ID: 20465309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of NADH channeling in coupled reaction of mitochondrial malate dehydrogenase and complex I in alamethicin-permeabilized rat liver mitochondria.
    Kotlyar AB; Maklashina E; Cecchini G
    Biochem Biophys Res Commun; 2004 Jun; 318(4):987-91. PubMed ID: 15147970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M
    Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [An optimum regimen for the use of malate dehydrogenase and lactate dehydrogenase during chemical regeneration of the cofactor].
    Markina VL; Eremin AN; Metelitsa DI
    Prikl Biokhim Mikrobiol; 1986; 22(5):635-41. PubMed ID: 3534877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Generation and transport systems of restored equivalents in rabbit brain tissue under experimental atherosclerosis].
    Gil'miyarova FN; Radomskaya VM; Shipigel' AS
    Ukr Biokhim Zh; 1975; 47(4):522-7. PubMed ID: 1209781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Malate dehydrogenases--structure and function.
    Minárik P; Tomásková N; Kollárová M; Antalík M
    Gen Physiol Biophys; 2002 Sep; 21(3):257-65. PubMed ID: 12537350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dehydrogenase activity of the liver in rats following 30 days' exposure to hypergravity].
    Vetrova EG; Krasnov IB
    Kosm Biol Aviakosm Med; 1988; 22(6):64-6. PubMed ID: 3226119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Enzymatic heterogeneity of the rat myocardium].
    Klibaner MI; Danilova KM
    Biull Eksp Biol Med; 1976; 81(4):487-9. PubMed ID: 1276459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methotrexate: studies on cellular metabolism. II--Effects on mitochondrial oxidative metabolism and ion transport.
    Yamamoto N; Lopes LC; Campello AP; Klüppel ML
    Cell Biochem Funct; 1989 Apr; 7(2):129-34. PubMed ID: 2766470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Onchocerca volvulus: effect of suramin on lactate dehydrogenase and malate dehydrogenase.
    Walter RD; Schulz-Key H
    Tropenmed Parasitol; 1980 Mar; 31(1):55-8. PubMed ID: 7376252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gossypol modulation of mouse heart and liver lactate dehydrogenase isoenzymes as a function of gender.
    Messiha FS
    Res Commun Chem Pathol Pharmacol; 1990 Aug; 69(2):237-40. PubMed ID: 2396051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of experimental myocardial infarct on the rate of NADH and 3-hydroxybutyrate oxidation in heart mitochondria].
    Dzheia PP; Toleikis AI; Prashkiavichius AK
    Vopr Med Khim; 1980; 26(6):731-5. PubMed ID: 7456403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondria from the left heart ventricles of both normotensive and spontaneously hypertensive rats oxidize externally added NADH mostly via a novel malate/oxaloacetate shuttle as reconstructed in vitro.
    Atlante A; Seccia TM; De Bari L; Marra E; Passarella S
    Int J Mol Med; 2006 Jul; 18(1):177-86. PubMed ID: 16786170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The oxidative enzyme pattern in developing and adult mice and adult rabbits.
    Azzopardi A; Thurlbeck WM
    Lab Invest; 1967 May; 16(5):706-16. PubMed ID: 4381712
    [No Abstract]   [Full Text] [Related]  

  • 20. Pyruvate transport in isolated cardiac mitochondria from two species of amphibian exhibiting dissimilar aerobic scope: Bufo marinus and Rana catesbeiana.
    Duerr JM; Tucker K
    J Exp Zool A Ecol Genet Physiol; 2007 Aug; 307(8):425-38. PubMed ID: 17583564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.