BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 2024715)

  • 1. Kinematics of the cercopithecine foot on arboreal and terrestrial substrates with implications for the interpretation of hominid terrestrial adaptations.
    Meldrum DJ
    Am J Phys Anthropol; 1991 Mar; 84(3):273-89. PubMed ID: 2024715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Not so fast: speed effects on forelimb kinematics in cercopithecine monkeys and implications for digitigrade postures in primates.
    Patel BA
    Am J Phys Anthropol; 2009 Sep; 140(1):92-112. PubMed ID: 19294733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plantigrady and foot adaptation in African apes: implications for hominid origins.
    Gebo DL
    Am J Phys Anthropol; 1992 Sep; 89(1):29-58. PubMed ID: 1530061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interplay between speed, kinetics, and hand postures during primate terrestrial locomotion.
    Patel BA
    Am J Phys Anthropol; 2010 Feb; 141(2):222-34. PubMed ID: 19639641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetrical gaits of Cebus apella: implications for the functional significance of diagonal sequence gait in primates.
    Wallace IJ; Demes B
    J Hum Evol; 2008 Jun; 54(6):783-94. PubMed ID: 18155128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influences of limb proportions and body size on locomotor kinematics in terrestrial primates and fossil hominins.
    Polk JD
    J Hum Evol; 2004 Oct; 47(4):237-52. PubMed ID: 15454335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotor kinetics on sloped arboreal and terrestrial substrates in a small quadrupedal mammal.
    Lammers AR
    Zoology (Jena); 2007; 110(2):93-103. PubMed ID: 17374478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hind limb proportions and kinematics: are small primates different from other small mammals?
    Schmidt M
    J Exp Biol; 2005 Sep; 208(Pt 17):3367-83. PubMed ID: 16109897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional morphology of cercopithecoid primate metacarpals.
    Patel BA
    J Hum Evol; 2010 Apr; 58(4):320-37. PubMed ID: 20226498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative postcranial body shape and locomotion in Chlorocebus aethiops and Cercopithecus mitis.
    Anapol F; Turner TR; Mott CS; Jolly CJ
    Am J Phys Anthropol; 2005 Jun; 127(2):231-9. PubMed ID: 15503342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terrestrial adaptations in the hands of Equatorius africanus revisited.
    Patel BA; Susman RL; Rossie JB; Hill A
    J Hum Evol; 2009 Dec; 57(6):763-72. PubMed ID: 19879632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chimpanzee ankle and foot joint kinematics: Arboreal versus terrestrial locomotion.
    Holowka NB; O'Neill MC; Thompson NE; Demes B
    Am J Phys Anthropol; 2017 Sep; 164(1):131-147. PubMed ID: 28594068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniqueness of primate forelimb posture during quadrupedal locomotion.
    Larson SG; Schmitt D; Lemelin P; Hamrick M
    Am J Phys Anthropol; 2000 May; 112(1):87-101. PubMed ID: 10766946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of human bipedalism as an adaptation for locomotion on flexible branches.
    Thorpe SK; Holder RL; Crompton RH
    Science; 2007 Jun; 316(5829):1328-31. PubMed ID: 17540902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heel contact as a function of substrate type and speed in primates.
    Schmitt D; Larson SG
    Am J Phys Anthropol; 1995 Jan; 96(1):39-50. PubMed ID: 7726294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotor versatility in the white-handed gibbon (Hylobates lar): a spatiotemporal analysis of the bipedal, tripedal, and quadrupedal gaits.
    Vereecke EE; D'Août K; Aerts P
    J Hum Evol; 2006 May; 50(5):552-67. PubMed ID: 16516949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus).
    Courtine G; Roy RR; Hodgson J; McKay H; Raven J; Zhong H; Yang H; Tuszynski MH; Edgerton VR
    J Neurophysiol; 2005 Jun; 93(6):3127-45. PubMed ID: 15647397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hindlimb suspension and hind foot reversal in Varecia variegata and other arboreal mammals.
    Meldrum DJ; Dagosto M; White J
    Am J Phys Anthropol; 1997 May; 103(1):85-102. PubMed ID: 9185953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speed modulation in hylobatid bipedalism: a kinematic analysis.
    Vereecke EE; D'Août K; Aerts P
    J Hum Evol; 2006 Nov; 51(5):513-26. PubMed ID: 16959298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of limb mass distribution on the ontogeny of quadrupedalism in infant baboons (Papio cynocephalus) and implications for the evolution of primate quadrupedalism.
    Raichlen DA
    J Hum Evol; 2005 Oct; 49(4):415-31. PubMed ID: 15998533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.