These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 202505)

  • 1. Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex.
    McCord JM; Day ED
    FEBS Lett; 1978 Feb; 86(1):139-42. PubMed ID: 202505
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of zinc on superoxide-dependent hydroxyl radical production in vitro.
    Coudray C; Rachidi S; Favier A
    Biol Trace Elem Res; 1993 Sep; 38(3):273-87. PubMed ID: 7504944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for superoxide-dependent reduction of Fe3+ and its role in enzyme-generated hydroxyl radical formation.
    Fong KL; McCay PB; Poyer JL
    Chem Biol Interact; 1976 Sep; 15(1):77-89. PubMed ID: 183903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: is it a mechanism for hydroxyl radical production in biochemical systems?
    Halliwell B
    FEBS Lett; 1978 Aug; 92(2):321-6. PubMed ID: 212302
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of iron on the distribution of superoxide and hydroxyl radicals as seen by spin trapping and on the superoxide dismutase assay.
    Buettner GR; Oberley LW; Leuthauser SW
    Photochem Photobiol; 1978; 28(4-5):693-5. PubMed ID: 216030
    [No Abstract]   [Full Text] [Related]  

  • 6. Superoxide-dependent and -independent mechanisms of iron mobilization from ferritin by xanthine oxidase. Implications for oxygen-free-radical-induced tissue destruction during ischaemia and inflammation.
    Biemond P; Swaak AJ; Beindorff CM; Koster JF
    Biochem J; 1986 Oct; 239(1):169-73. PubMed ID: 3026367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of hydroxyl radicals in the iron-ethylenediaminetetraacetic acid mediated stimulation of microsomal oxidation of ethanol.
    Cederbaum AI; Dicker E; Cohen G
    Biochemistry; 1980 Aug; 19(16):3698-704. PubMed ID: 6773547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of oxygen radicals in solutions of 7,8-dihydroneopterin.
    Oettl K; Wirleitner B; Baier-Bitterlich G; Grammer T; Fuchs D; Reibnegger G
    Biochem Biophys Res Commun; 1999 Oct; 264(1):262-7. PubMed ID: 10527875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of reduced glutathione with active oxygen species generated by xanthine-oxidase-catalyzed metabolism of xanthine.
    Ross D; Cotgreave I; Moldéus P
    Biochim Biophys Acta; 1985 Sep; 841(3):278-82. PubMed ID: 2992602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron ion-dependent modification of bases in DNA by the superoxide radical-generating system hypoxanthine/xanthine oxidase.
    Aruoma OI; Halliwell B; Dizdaroglu M
    J Biol Chem; 1989 Aug; 264(22):13024-8. PubMed ID: 2546943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals.
    Halliwell B; Gutteridge JM
    FEBS Lett; 1981 Jun; 128(2):347-52. PubMed ID: 6266877
    [No Abstract]   [Full Text] [Related]  

  • 12. Iron-ethylenediaminetetraacetic acid (EDTA)-catalyzed superoxide dismutation revisited: an explanation of why the dismutase activity of Fe-EDTA cannot be detected in the cytochrome c/Xanthine oxidase assay system.
    Bull C; Fee JA; O'Neill P; Fielden EM
    Arch Biochem Biophys; 1982 May; 215(2):551-5. PubMed ID: 6284055
    [No Abstract]   [Full Text] [Related]  

  • 13. Release of iron from ferritin by xanthine oxidase. Role of the superoxide radical.
    Bolann BJ; Ulvik RJ
    Biochem J; 1987 Apr; 243(1):55-9. PubMed ID: 3038086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pentoxifylline. A hydroxyl radical scavenger.
    Freitas JP; Filipe PM
    Biol Trace Elem Res; 1995; 47(1-3):307-11. PubMed ID: 7779563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxide-mediated release of iron from ferritin by some flavoenzymes.
    Bando Y; Aki K
    Biochem Biophys Res Commun; 1990 Apr; 168(2):389-95. PubMed ID: 2159290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of palosein (superoxide dismutase) and catalase upon oxygen derived free radical induced degradation of equine synovial fluid.
    Auer DE; Ng JC; Seawright AA
    Equine Vet J; 1990 Jan; 22(1):13-7. PubMed ID: 2298185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haemoglobin oxidation and free radical production in the red cell.
    Winterbourn CC
    Biomed Biochim Acta; 1983; 42(11-12):S134-8. PubMed ID: 6326764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper(II)ethylenediaminetetraacetate does disproportionate superoxide.
    Willingham WM; Sorenson JR
    Biochem Biophys Res Commun; 1988 Jan; 150(1):252-8. PubMed ID: 2827669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Participation of superoxide, hydrogen peroxide and hydroxyl radicals in NADPH-cytochrome P-450 reductase-catalyzed peroxidation of methyl linolenate.
    Kameda K; Ono T; Imai Y
    Biochim Biophys Acta; 1979 Jan; 572(1):77-82. PubMed ID: 32915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singlet oxygen generation in the superoxide reaction.
    Mao Y; Zang L; Shi X
    Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.