These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 202505)

  • 41. Superoxide radical production by allopurinol and xanthine oxidase.
    Galbusera C; Orth P; Fedida D; Spector T
    Biochem Pharmacol; 2006 Jun; 71(12):1747-52. PubMed ID: 16650385
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II).
    Gutteridge JM; Maidt L; Poyer L
    Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of oxygen radicals in the phototoxicity of tetracyclines toward Escherichia coli B.
    Martin JP; Colina K; Logsdon N
    J Bacteriol; 1987 Jun; 169(6):2516-22. PubMed ID: 3034858
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of reactive oxygen metabolites on endothelial permeability: role of nitric oxide and iron.
    Okayama N; Grisham MB; Kevil CG; Eppihimer LA; Wink DA; Alexander JS
    Microcirculation; 1999 Jun; 6(2):107-16. PubMed ID: 10466113
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of EDTA and iron on the oxidation of hydroxyl radical scavenging agents and ethanol by rat liver microsomes.
    Feierman DE; Cederbaum AI
    Biochem Biophys Res Commun; 1983 Oct; 116(2):765-70. PubMed ID: 6418168
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reactive oxygen metabolite-induced toxicity to cultured bovine endothelial cells: status of cellular iron in mediating injury.
    Hiraishi H; Terano A; Razandi M; Pedram A; Sugimoto T; Harada T; Ivey KJ
    J Cell Physiol; 1994 Jul; 160(1):132-4. PubMed ID: 8021293
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of reaction of 3-hydroxyanthranilic acid with molecular oxygen.
    Manthey MK; Pyne SG; Truscott RJ
    Biochim Biophys Acta; 1990 May; 1034(2):207-12. PubMed ID: 2162210
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inactivation of Escherichia coli by superoxide radicals and their dismutation products.
    van Hemmen JJ; Meuling WJ
    Arch Biochem Biophys; 1977 Aug; 182(2):743-8. PubMed ID: 197892
    [No Abstract]   [Full Text] [Related]  

  • 50. The role of superoxide anion radical in the reduction of ferritin iron by xanthine oxidase.
    Williams DM; Lee GR; Cartwright GE
    J Clin Invest; 1974 Feb; 53(2):665-7. PubMed ID: 11344583
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhancement of platelet function by superoxide anion.
    Handin RI; Karabin R; Boxer GJ
    J Clin Invest; 1977 May; 59(5):959-65. PubMed ID: 192766
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system.
    Ambruso DR; Johnston RB
    J Clin Invest; 1981 Feb; 67(2):352-60. PubMed ID: 6780607
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A reaction of the superoxide radical with tetrapyrroles.
    Robertson P; Fridovich I
    Arch Biochem Biophys; 1982 Feb; 213(2):353-7. PubMed ID: 6280613
    [No Abstract]   [Full Text] [Related]  

  • 54. Cell nuclei generate DNA-nicking superoxide radicals.
    Peskin AV; Shlyahova L
    FEBS Lett; 1986 Jan; 194(2):317-21. PubMed ID: 3000831
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase.
    Marklund S; Marklund G
    Eur J Biochem; 1974 Sep; 47(3):469-74. PubMed ID: 4215654
    [No Abstract]   [Full Text] [Related]  

  • 56. Catalysis of the disproportionation of superoxide by metalloporphyrins. III.
    Pasternack RF; Banth A; Pasternack JM; Johnson CS
    J Inorg Biochem; 1981 Nov; 15(3):261-7. PubMed ID: 6273505
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Putative superoxide dismutase activity of iron-EDTA: a reexamination.
    Diguiseppi J; Fridovich I
    Arch Biochem Biophys; 1980 Aug; 203(1):145-50. PubMed ID: 6250482
    [No Abstract]   [Full Text] [Related]  

  • 58. Free radical metabolism of hydralazine. Binding and degradation of nucleic acids.
    Sinha BK; Patterson MA
    Biochem Pharmacol; 1983 Nov; 32(22):3279-84. PubMed ID: 6197074
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thiyl (sulfhydryl/thiol) free radical reactions, vitamins, beta-carotene, and superoxide dismutase in oxidative stress: design and interpretation of enzymatic studies.
    Kundu SC; Willson RL
    Methods Enzymol; 1995; 251():69-81. PubMed ID: 7651232
    [No Abstract]   [Full Text] [Related]  

  • 60. Superoxide dismutase mimic prepared from desferrioxamine and manganese dioxide.
    Beyer WF; Fridovich I
    Methods Enzymol; 1990; 186():242-9. PubMed ID: 2233297
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.