BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2025258)

  • 1. Sodium-dependent, concentrative nucleoside transport in Walker 256 rat carcinosarcoma cells.
    Crawford CR; Belt JA
    Biochem Biophys Res Commun; 1991 Mar; 175(3):846-51. PubMed ID: 2025258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleoside transport in Walker 256 rat carcinosarcoma and S49 mouse lymphoma cells. Differences in sensitivity to nitrobenzylthioinosine and thiol reagents.
    Belt JA; Noel LD
    Biochem J; 1985 Dec; 232(3):681-8. PubMed ID: 3004414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-dependent nucleoside transport in mouse intestinal epithelial cells. Two transport systems with differing substrate specificities.
    Vijayalakshmi D; Belt JA
    J Biol Chem; 1988 Dec; 263(36):19419-23. PubMed ID: 3198634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na(+)-dependent, active nucleoside transport in mouse spleen lymphocytes, leukemia cells, fibroblasts and macrophages, but not in equivalent human or pig cells; dipyridamole enhances nucleoside salvage by cells with both active and facilitated transport.
    Plagemann PG; Aran JM
    Biochim Biophys Acta; 1990 Jun; 1025(1):32-42. PubMed ID: 2369575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of 2',2'-difluorodeoxycytidine (gemcitabine) and formycin B with the Na+-dependent and -independent nucleoside transporters of Ehrlich ascites tumor cells.
    Burke T; Lee S; Ferguson PJ; Hammond JR
    J Pharmacol Exp Ther; 1998 Sep; 286(3):1333-40. PubMed ID: 9732397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleoside transport in brush border membrane vesicles from human kidney.
    Gutierrez MM; Brett CM; Ott RJ; Hui AC; Giacomini KM
    Biochim Biophys Acta; 1992 Mar; 1105(1):1-9. PubMed ID: 1567888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium-dependent, concentrative nucleoside transport in cultured intestinal epithelial cells.
    Jakobs ES; Paterson AR
    Biochem Biophys Res Commun; 1986 Nov; 140(3):1028-35. PubMed ID: 3778480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na(+)-dependent, active and Na(+)-independent, facilitated transport of formycin B in mouse spleen lymphocytes.
    Plagemann PG; Aran JM; Woffendin C
    Biochim Biophys Acta; 1990 Feb; 1022(1):93-102. PubMed ID: 2302407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Na(+)-dependent, active nucleoside transport in rat and mouse peritoneal macrophages, a mouse macrophage cell line and normal rat kidney cells.
    Plagemann PG; Aran JM
    Biochim Biophys Acta; 1990 Oct; 1028(3):289-98. PubMed ID: 2223800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleoside transport in L1210 murine leukemia cells. Evidence for three transporters.
    Crawford CR; Ng CY; Noel LD; Belt JA
    J Biol Chem; 1990 Jun; 265(17):9732-6. PubMed ID: 2351668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium-dependent and equilibrative nucleoside transport systems in L1210 mouse leukemia cells: effect of inhibitors of equilibrative systems on the content and retention of nucleosides.
    Dagnino L; Paterson AR
    Cancer Res; 1990 Oct; 50(20):6549-53. PubMed ID: 1698538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na(+)-dependent, active nucleoside transport in S49 mouse lymphoma cells and loss in AE-1 mutant deficient in facilitated nucleoside transport.
    Plagemann PG
    J Cell Biochem; 1991 May; 46(1):54-9. PubMed ID: 1874800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycoplasma contamination greatly enhances the apparent transport and concentrative accumulation of formycin B by mammalian cell culture.
    Plagemann PG
    Biochim Biophys Acta; 1991 Apr; 1064(1):162-4. PubMed ID: 1902747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium-dependent nucleoside transport in the human intestinal brush-border membrane.
    Patil SD; Unadkat JD
    Am J Physiol; 1997 Jun; 272(6 Pt 1):G1314-20. PubMed ID: 9227465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na(+)-dependent, concentrative nucleoside transport in rat macrophages. Specificity for natural nucleosides and nucleoside analogs, including dideoxynucleosides, and comparison of nucleoside transport in rat, mouse and human macrophages.
    Plagemann PG
    Biochem Pharmacol; 1991 Jul; 42(2):247-52. PubMed ID: 1859446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of formycin B as a general substrate for measuring facilitated nucleoside transport in mammalian cells.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1989 Jan; 1010(1):7-15. PubMed ID: 2909251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake and release of [3H]formycin B via sodium-dependent nucleoside transporters in mouse leukemic L1210/MA27.1 cells.
    Borgland SL; Parkinson FE
    J Pharmacol Exp Ther; 1997 Apr; 281(1):347-53. PubMed ID: 9103516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium-dependent nucleoside transport in mouse leukemia L1210 cells.
    Dagnino L; Bennett LL; Paterson AR
    J Biol Chem; 1991 Apr; 266(10):6308-11. PubMed ID: 2007583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of equilibrative and concentrative Na+-dependent (cif) nucleoside transport in acute promyelocytic leukemia NB4 cells.
    Roovers KI; Meckling-Gill KA
    J Cell Physiol; 1996 Mar; 166(3):593-600. PubMed ID: 8600163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of nucleoside uptake by the basolateral side of the sheep choroid plexus epithelium perfused in situ.
    Markovic I; Segal M; Djuricic B; Redzic Z
    Exp Physiol; 2008 Mar; 93(3):325-33. PubMed ID: 18039975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.