BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2025282)

  • 41. On the binding of aminoalkyl adenylates to isoleucyl-tRNA synthetase from Escherichia coli MRE 600.
    Flossdorf J; Marutzky R; Messer K; Kula MR
    Nucleic Acids Res; 1977 Mar; 4(3):673-83. PubMed ID: 325520
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Equilibrium measurements of cognate and noncognate interactions between aminoacyl transfer RNA synthetases and transfer RNA.
    Lam SS; Schimmel PR
    Biochemistry; 1975 Jun; 14(12):2775-80. PubMed ID: 238575
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of side-chain structure of aliphatic amino acids on binding to isoleucyl-tRNA synthetase from Escherichia coli MRE 600.
    Flossdorf J; Prätorius HJ; Kula MR
    Eur J Biochem; 1976 Jun; 66(1):147-55. PubMed ID: 782880
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase.
    Hughes J; Mellows G
    Biochem J; 1980 Oct; 191(1):209-19. PubMed ID: 6258580
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanism of mupirocin transport into sensitive and resistant bacteria.
    Capobianco JO; Doran CC; Goldman RC
    Antimicrob Agents Chemother; 1989 Feb; 33(2):156-63. PubMed ID: 2497702
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Superspecificity of aminoacyl-tRNA-synthases].
    Favorova OO
    Mol Biol (Mosk); 1984; 18(1):205-26. PubMed ID: 6423966
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proofreading in trans by an aminoacyl-tRNA synthetase: a model for single site editing by isoleucyl-tRNA synthetase.
    Jakubowski H
    Nucleic Acids Res; 1996 Jul; 24(13):2505-10. PubMed ID: 8692688
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases.
    Jakubowski H; Fersht AR
    Nucleic Acids Res; 1981 Jul; 9(13):3105-17. PubMed ID: 7024910
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence for distinct locations for metal binding sites in two closely related class I tRNA synthetases.
    Schimmel P; Landro JA; Schmidt E
    J Biomol Struct Dyn; 1993 Dec; 11(3):571-81. PubMed ID: 8129874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integrated function of a kinetic proofreading mechanism: double-stage proofreading by isoleucyl-tRNA synthetase.
    Okamoto M; Savageau MA
    Biochemistry; 1986 Apr; 25(8):1969-75. PubMed ID: 3518797
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gly56 in the synthetic site of isoleucyl-tRNA synthetase confers specificity and maintains communication with the editing site.
    Dulic M; Krpan N; Gruic-Sovulj I
    FEBS Lett; 2023 Dec; 597(24):3114-3124. PubMed ID: 38015921
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermodynamic characterization of the binding of nucleotides to glycyl-tRNA synthetase.
    Dignam JD; Nada S; Chaires JB
    Biochemistry; 2003 May; 42(18):5333-40. PubMed ID: 12731874
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and characterization of the isoleucyl-tRNA synthetase component from the high molecular weight complex of sheep liver: a hydrophobic metalloprotein.
    Lazard M; Mirande M; Waller JP
    Biochemistry; 1985 Sep; 24(19):5099-106. PubMed ID: 4074679
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct determination of the enthalpy of binding of tRNAIle to isoleucyl-tRNA synthetase of E. coli MRE 600.
    Wiesinger H; Kula MR; Hinz HJ
    Hoppe Seylers Z Physiol Chem; 1980; 361(2):201-5. PubMed ID: 6987144
    [No Abstract]   [Full Text] [Related]  

  • 55. Aminoacyl-tRNA synthetases: affinity labeling of the ATP binding site by 2', 3' -ribose oxidized ATP.
    Fayat G; Fromant M; Blanquet S
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2088-92. PubMed ID: 353807
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aminoacylation of tRNAs as critical step of protein biosynthesis.
    Cramer F; Englisch U; Freist W; Sternbach H
    Biochimie; 1991; 73(7-8):1027-35. PubMed ID: 1720662
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nuclear Overhauser effect studies of the conformations of MgATP bound to the active and secondary sites of muscle pyruvate kinase.
    Rosevear PR; Fox TL; Mildvan AS
    Biochemistry; 1987 Jun; 26(12):3487-93. PubMed ID: 3498511
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isoleucyl transfer ribonucleic acid synthetase. Competitive inhibition with respect to transfer ribonucleic acid by blue dextran.
    Moe JG; Piszkiewicz D
    Biochemistry; 1979 Jun; 18(13):2810-4. PubMed ID: 383141
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deoxyribosyl analogues of methionyl and isoleucyl sulfamate adenylates as inhibitors of methionyl-tRNA and isoleucyl-tRNA synthetases.
    Kim SE; Kim SY; Kim S; Kang T; Lee J
    Bioorg Med Chem Lett; 2005 Jul; 15(14):3389-93. PubMed ID: 15951176
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mutation of the carboxy terminal zinc finger of E. coli isoleucyl-tRNA synthetase alters zinc binding and aminoacylation activity.
    Zhou L; Rosevear PR
    Biochem Biophys Res Commun; 1995 Nov; 216(2):648-54. PubMed ID: 7488160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.