BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2025300)

  • 21. Kinetics of the light-induced proton translocation associated with the pH-dependent formation of the metarhodopsin I/II equilibrium of bovine rhodopsin.
    Dickopf S; Mielke T; Heyn MP
    Biochemistry; 1998 Dec; 37(48):16888-97. PubMed ID: 9836581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of ethanol and osmotic stress on receptor conformation. Reduced water activity amplifies the effect of ethanol on metarhodopsin II formation.
    Mitchell DC; Litman BJ
    J Biol Chem; 2000 Feb; 275(8):5355-60. PubMed ID: 10681509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of the lipid matrix for structure and function of the GPCR rhodopsin.
    Soubias O; Gawrisch K
    Biochim Biophys Acta; 2012 Feb; 1818(2):234-40. PubMed ID: 21924236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Halogenated general anesthetics in visual photoreceptor membranes as examined by static and dynamic properties of rhodopsin.
    Daigle I; Gilbert M; Boucher F
    Biochem Cell Biol; 1993; 71(1-2):57-64. PubMed ID: 8392355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoactivation of rhodopsin and interaction with transducin in detergent micelles. Effect of 'doping' with steroid molecules.
    König B; Welte W; Hofmann KP
    FEBS Lett; 1989 Oct; 257(1):163-6. PubMed ID: 2806558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Salt dependence of the formation and stability of the signaling state in G protein-coupled receptors: evidence for the involvement of the Hofmeister effect.
    Vogel R; Fan GB; Sheves M; Siebert F
    Biochemistry; 2001 Jan; 40(2):483-93. PubMed ID: 11148043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein rotational diffusion and lipid/protein interactions in recombinants of bovine rhodopsin with saturated diacylphosphatidylcholines of different chain lengths studied by conventional and saturation-transfer electron spin resonance.
    Ryba NJ; Marsh D
    Biochemistry; 1992 Aug; 31(33):7511-8. PubMed ID: 1324716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying the differential effects of DHA and DPA on the early events in visual signal transduction.
    Mitchell DC; Niu SL; Litman BJ
    Chem Phys Lipids; 2012 May; 165(4):393-400. PubMed ID: 22405878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state.
    Arnis S; Hofmann KP
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7849-53. PubMed ID: 8356093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The kinetics and thermodynamics of bleaching of rhodopsin in dimyristoylphosphatidylcholine. Identification of meta-I, meta-II, and meta-III intermediates.
    Ryba NJ; Marsh D; Uhl R
    Biophys J; 1993 Jun; 64(6):1801-12. PubMed ID: 8396448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fourier transform infrared study of the rod outer segment disk and plasma membranes of vertebrate retina.
    Lamba OP; Borchman D; O'Brien PJ
    Biochemistry; 1994 Feb; 33(7):1704-12. PubMed ID: 8110772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of phosphorylation on receptor conformation: the metarhodopsin I in equilibrium with metarhodopsin II equilibrium in multiply phosphorylated rhodopsin.
    Mitchell DC; Kibelbek J; Litman BJ
    Biochemistry; 1992 Sep; 31(35):8107-11. PubMed ID: 1525152
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of cholesterol in rod outer segment membranes.
    Albert AD; Boesze-Battaglia K
    Prog Lipid Res; 2005; 44(2-3):99-124. PubMed ID: 15924998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and function in rhodopsin: the fate of opsin formed upon the decay of light-activated metarhodopsin II in vitro.
    Sakamoto T; Khorana HG
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):249-53. PubMed ID: 7816826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The bilayer enhances rhodopsin kinetic stability in bovine rod outer segment disk membranes.
    Corley SC; Sprangers P; Albert AD
    Biophys J; 2011 Jun; 100(12):2946-54. PubMed ID: 21689528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy.
    Hoersch D; Otto H; Wallat I; Heyn MP
    Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of membrane elastic energy to rhodopsin function.
    Soubias O; Teague WE; Hines KG; Mitchell DC; Gawrisch K
    Biophys J; 2010 Aug; 99(3):817-24. PubMed ID: 20682259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of calmodulin on the structural state of photoreceptor membranes and rhodopsin-containing phospholipid vesicles.
    Volotovski ID; Ryba NJ; Watts A
    Biochem Biophys Res Commun; 1985 Jun; 129(2):517-21. PubMed ID: 4015644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 2H and 31P nuclear magnetic resonance studies of membranes containing bovine rhodopsin.
    Albert AD; Lane SA; Yeagle PL
    J Membr Biol; 1985; 87(3):211-5. PubMed ID: 4078886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional differences in the interaction of arrestin and its splice variant, p44, with rhodopsin.
    Pulvermüller A; Maretzki D; Rudnicka-Nawrot M; Smith WC; Palczewski K; Hofmann KP
    Biochemistry; 1997 Jul; 36(30):9253-60. PubMed ID: 9230059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.