These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2025634)

  • 1. Osmotic lysis of chromaffin granules treated with the ionophores nigericin and A23187 in isotonic sucrose solution at low pH.
    Engel J; Donath E
    Biochim Biophys Acta; 1991 Apr; 1064(1):155-61. PubMed ID: 2025634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive ion permeability of the chromaffin-granule membrane.
    Phillips JH
    Biochem J; 1977 Nov; 168(2):289-97. PubMed ID: 23117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a divalent cation dependent catecholamine storage complex in chromaffin granules.
    Südhof TC
    Biochem Biophys Res Commun; 1983 Oct; 116(2):663-8. PubMed ID: 6418164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmotic lysis of bovine chromaffin granules in isotonic solutions of salts of weak organic acids. Release of catecholamines, ATP, dopamine beta-hydroxylase, and enkephalin-like material.
    Holz RW
    J Biol Chem; 1980 Aug; 255(16):7751-5. PubMed ID: 7400143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmotic properties of the chromogranins and relation to osmotic pressure in catecholamine storage granules.
    Helle KB; Reed RK; Pihl KE; Serck-Hanssen G
    Acta Physiol Scand; 1985 Jan; 123(1):21-33. PubMed ID: 3969832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional asymmetry of the amine transporter from chromaffin granules.
    Maron R; Stern Y; Kanner BI; Schuldiner S
    J Biol Chem; 1983 Oct; 258(19):11476-81. PubMed ID: 6311813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of magnesium by chromaffin granules in vitro: role of the proton electrochemical gradient.
    Fiedler J; Daniels AJ
    J Neurochem; 1984 May; 42(5):1291-7. PubMed ID: 6707633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionophore-mediated uptake of ciprofloxacin and vincristine into large unilamellar vesicles exhibiting transmembrane ion gradients.
    Fenske DB; Wong KF; Maurer E; Maurer N; Leenhouts JM; Boman N; Amankwa L; Cullis PR
    Biochim Biophys Acta; 1998 Nov; 1414(1-2):188-204. PubMed ID: 9804953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles.
    Schuldiner S; Fishkes H; Kanner BI
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3713-6. PubMed ID: 29292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion permeability of isolated chromaffin granules.
    Johnson RG; Scarpa A
    J Gen Physiol; 1976 Dec; 68(6):601-31. PubMed ID: 11272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catecholamines (CA) and adenosine triphosphate (ATP) are separately stored in bovine adrenal medulla, both in ionic linkage to granule sites, and not as a non-diffusible CA-ATP-protein complex.
    Uvnäs B; Aborg CH
    Acta Physiol Scand; 1988 Mar; 132(3):297-311. PubMed ID: 3227876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-induced lysis of chromaffin granules provides evidence against the two-pool hypothesis of catecholamine storage.
    Südhof TC; Morris SJ
    Biochim Biophys Acta; 1983 May; 757(2):176-81. PubMed ID: 6849971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internal pH of isolated chromaffin vesicles.
    Johnson RG; Scarpa A
    J Biol Chem; 1976 Apr; 251(7):2189-91. PubMed ID: 5444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bicarbonate- and calcium-dependent induction of rapid guinea pig sperm acrosome reactions by monovalent ionophores.
    Hyne RV
    Biol Reprod; 1984 Sep; 31(2):312-23. PubMed ID: 6089922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concomitant release by ion exchange of catecholamines (CA) and adenosine triphosphate (ATP) from bovine chromaffin granules superfused with isotonic sodium or potassium salt solutions.
    Uvnäs B; Aborg CH
    Acta Physiol Scand; 1987 Apr; 129(4):585-6. PubMed ID: 3591381
    [No Abstract]   [Full Text] [Related]  

  • 16. An osmotic mechanism for exocytosis from dissociated chromaffin cells.
    Pollard HB; Pazoles CJ; Creutz CE; Scott JH; Zinder O; Hotchkiss A
    J Biol Chem; 1984 Jan; 259(2):1114-21. PubMed ID: 6420400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cation-dependent lysis of chromaffin granules - an alternative hypothesis fro osmotically-driven exocytosis.
    Geisow MJ; Burgoyne RD
    Cell Biol Int Rep; 1982 Apr; 6(4):353-9. PubMed ID: 7094025
    [No Abstract]   [Full Text] [Related]  

  • 18. Matrix free Ca2+ in isolated chromaffin vesicles.
    Bulenda D; Gratzl M
    Biochemistry; 1985 Dec; 24(26):7760-5. PubMed ID: 3004565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics and determinants of osmotic lysis in chromaffin granules.
    Südhof TC; Morris SJ
    Biochim Biophys Acta; 1983 May; 730(2):207-16. PubMed ID: 6849904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A characterization of the nucleotide uptake of chromaffin granules of bovine adrenal medulla.
    Aberer W; Kostron H; Huber E; Winkler H
    Biochem J; 1978 Jun; 172(3):353-60. PubMed ID: 28725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.