These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2025636)

  • 1. Surface ripples cause the large fluid spaces between gel phase bilayers containing small amounts of cholesterol.
    Simon SA; McIntosh TJ
    Biochim Biophys Acta; 1991 Apr; 1064(1):69-74. PubMed ID: 2025636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ripple phase of phosphatidylcholines: effect of chain length and cholesterol.
    Hicks A; Dinda M; Singer MA
    Biochim Biophys Acta; 1987 Sep; 903(1):177-85. PubMed ID: 3651451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of hydration and steric (entropic) pressures to the interactions between phosphatidylcholine bilayers: experiments with the subgel phase.
    McIntosh TJ; Simon SA
    Biochemistry; 1993 Aug; 32(32):8374-84. PubMed ID: 8347634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental tests for protrusion and undulation pressures in phospholipid bilayers.
    McIntosh TJ; Advani S; Burton RE; Zhelev DV; Needham D; Simon SA
    Biochemistry; 1995 Jul; 34(27):8520-32. PubMed ID: 7612594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pretransition-ripples in bilayers of dipalmitoylphosphatidylcholine: undulation or periodic segments? A freeze-fracture study.
    Meyer HW
    Biochim Biophys Acta; 1996 Jul; 1302(2):138-44. PubMed ID: 8695663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimal radius of curvature of lipid bilayers in the gel phase state corresponds to the dimension of biomembrane structures "caveolae".
    Meyer HW; Westermann M; Stumpf M; Richter W; Ulrich AS; Hoischen C
    J Struct Biol; 1998 Dec; 124(1):77-87. PubMed ID: 9931276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions.
    Marra J; Israelachvili J
    Biochemistry; 1985 Aug; 24(17):4608-18. PubMed ID: 4063343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes.
    McIntosh TJ; Magid AD; Simon SA
    Biochemistry; 1989 Jan; 28(1):17-25. PubMed ID: 2706242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of sterols on structures formed in the gel/subgel phase state of dipalmitoylphosphatidylcholine bilayers.
    Meyer HW; Semmler K; Quinn PJ
    Mol Membr Biol; 1997; 14(4):187-93. PubMed ID: 9491370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of benzene with bilayers. Thermal and structural studies.
    McDaniel RV; Simon SA; McIntosh TJ; Borovyagin V
    Biochemistry; 1982 Aug; 21(17):4116-26. PubMed ID: 6896997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilayer membrane formation in the chenodeoxycholate, phosphatidylcholine and cholesterol solution.
    Igimi H; Murata K
    J Pharmacobiodyn; 1983 Apr; 6(4):261-6. PubMed ID: 6194282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of cholesterol on measured interaction and compressibility of dipalmitoylphosphatidylcholine bilayers.
    Rand RP; Parsegian VA; Henry JA; Lis LJ; McAlister M
    Can J Biochem; 1980 Oct; 58(10):959-68. PubMed ID: 6893949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of the repulsive pressure between phosphatidylcholine bilayers.
    Simon SA; Advani S; McIntosh TJ
    Biophys J; 1995 Oct; 69(4):1473-83. PubMed ID: 8534818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct force measurements of specific and nonspecific protein interactions.
    Leckband DE; Schmitt FJ; Israelachvili JN; Knoll W
    Biochemistry; 1994 Apr; 33(15):4611-24. PubMed ID: 8161517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The developmental process from micelle to liquid crystal in the ursodeoxycholate, phosphatidylcholine and cholesterol solution.
    Igimi H; Nishijima S; Shimura H
    J Pharmacobiodyn; 1983 Apr; 6(4):267-71. PubMed ID: 6620114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macro-ripple phase formation in bilayers composed of galactosylceramide and phosphatidylcholine.
    Brown RE; Anderson WH; Kulkarni VS
    Biophys J; 1995 Apr; 68(4):1396-405. PubMed ID: 7787025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts.
    Marquês JT; Viana AS; De Almeida RF
    Biochim Biophys Acta; 2011 Jan; 1808(1):405-14. PubMed ID: 20955684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological transitions of brain sphingomyelin are determined by the hydration protocol: ripples re-arrange in plane, and sponge-like networks disintegrate into small vesicles.
    Meyer HW; Bunjes H; Ulrich AS
    Chem Phys Lipids; 1999 Jun; 99(2):111-23. PubMed ID: 10390835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes.
    McMullen TP; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 2009 Feb; 1788(2):345-57. PubMed ID: 19083990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steric repulsion between phosphatidylcholine bilayers.
    McIntosh TJ; Magid AD; Simon SA
    Biochemistry; 1987 Nov; 26(23):7325-32. PubMed ID: 3427075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.