These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 20260832)

  • 1. The proteins of green leaves; isolation, enzymatic properties and auxin content of spinach cytoplasmic proteins.
    WILDMAN SG; BONNER J
    Arch Biochem; 1947 Aug; 14(3):381-413. PubMed ID: 20260832
    [No Abstract]   [Full Text] [Related]  

  • 2. The enzymatic conversion of tryptophan to auxin by spinach leaves.
    WILDMAN SG; FERRI MG; BONNER J
    Arch Biochem; 1947 Apr; 13(1):131-44. PubMed ID: 20296071
    [No Abstract]   [Full Text] [Related]  

  • 3. The proteins of green leaves; purine, pentose, total phosphorus and acid-labile phosphorus of the cytoplasmic proteins of spinach leaves.
    WILDMAN SG; CAMPBELL JM; BONNER J
    Arch Biochem; 1949 Nov; 24(1):9-24. PubMed ID: 15400358
    [No Abstract]   [Full Text] [Related]  

  • 4. The proteins of green leaves. V. A cytoplasmic nucleoprotein from spinach and tobacco leaves.
    EGGMAN L; SINGER SJ; WILDMAN SG
    J Biol Chem; 1953 Dec; 205(2):969-83. PubMed ID: 13129275
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of exogenous 24-epibrassinolide on the ecdysteroid content in the leaves of Spinacia oleracea L.
    Kamlar M; Rothova O; Salajkova S; Tarkowska D; Drasar P; Kocova M; Harmatha J; Hola D; Kohout L; Macek T
    Steroids; 2015 May; 97():107-12. PubMed ID: 25578736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction of functional ingredients from spinach (Spinacia oleracea L.) using liquid solvent and supercritical CO₂ extraction.
    Jaime L; Vázquez E; Fornari T; López-Hazas Mdel C; García-Risco MR; Santoyo S; Reglero G
    J Sci Food Agric; 2015 Mar; 95(4):722-9. PubMed ID: 24930815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moderate water stress prevents the postharvest decline of ascorbic acid in spinach (Spinacia oleracea L.) but not in spinach beet (Beta vulgaris L.).
    Mogren LM; Beacham AM; Reade JP; Monaghan JM
    J Sci Food Agric; 2016 Jul; 96(9):2976-80. PubMed ID: 26381599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic mechanisms in the respiration of spinach leaves.
    BONNER J; WILDMAN SG
    Arch Biochem; 1946 Aug; 10():497-518. PubMed ID: 20998015
    [No Abstract]   [Full Text] [Related]  

  • 9. Flavonoids in baby spinach (Spinacia oleracea L.): changes during plant growth and storage.
    Bergquist SA; Gertsson UE; Knuthsen P; Olsson ME
    J Agric Food Chem; 2005 Nov; 53(24):9459-64. PubMed ID: 16302762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of intact chloroplasts from Arabidopsis and spinach leaves by isopycnic centrifugation.
    Seigneurin-Berny D; Salvi D; Joyard J; Rolland N
    Curr Protoc Cell Biol; 2008 Sep; Chapter 3():Unit 3.30. PubMed ID: 18819091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid isolation of intact chloroplasts from spinach leaves.
    Joly D; Carpentier R
    Methods Mol Biol; 2011; 684():321-5. PubMed ID: 20960139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Popeye strikes again: The deep proteome of spinach leaves.
    Fasoli E; D'Amato A; Kravchuk AV; Boschetti E; Bachi A; Righetti PG
    J Proteomics; 2011 Jan; 74(1):127-36. PubMed ID: 21056706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BIOCHEMICAL STUDIES ON PTERIDINES IN PLANTS. I. BIOGENESIS OF FOLIC ACID IN GREEN LEAVES: CONFIRMATION OF ENZYMATIC SYNTHESIS OF FOLATE COMPOUNDS BY THE ENZYME SYSTEM FROM THE SPINACH.
    MITSUDA H; SUZUKI Y; TADERA K; KAWAI F
    J Vitaminol (Kyoto); 1965 Jun; 11():122-38. PubMed ID: 14343318
    [No Abstract]   [Full Text] [Related]  

  • 14. De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress.
    Yan J; Yu L; Xuan J; Lu Y; Lu S; Zhu W
    Sci Rep; 2016 Feb; 6():19473. PubMed ID: 26857466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in the metabolite profiles of spinach (Spinacia oleracea L.) leaf in different concentrations of nitrate in the culture solution.
    Okazaki K; Oka N; Shinano T; Osaki M; Takebe M
    Plant Cell Physiol; 2008 Feb; 49(2):170-7. PubMed ID: 18089581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some Factors Involved in Oxygen Evolution From Triturated Spinach Leaves.
    Boyle FP
    Science; 1948 Oct; 108(2805):359-60. PubMed ID: 17810998
    [No Abstract]   [Full Text] [Related]  

  • 17. Glycerate-oxidizing activity of glycolate oxidase from leaves of Spinacia oleracea.
    Huang JJ; Wang WJ; Ye JQ; Peng XX
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):183-8. PubMed ID: 16622317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic polyphosphate in spinach leaves.
    MIYACHI S
    J Biochem; 1961 Oct; 50():367-71. PubMed ID: 14474776
    [No Abstract]   [Full Text] [Related]  

  • 19. Oxalate synthesis in leaves is associated with root uptake of nitrate and its assimilation in spinach (Spinacia oleracea L.) plants.
    Liu XX; Zhou K; Hu Y; Jin R; Lu LL; Jin CW; Lin XY
    J Sci Food Agric; 2015 Aug; 95(10):2105-16. PubMed ID: 25243598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher anthocyanin accumulation associated with higher transcription levels of anthocyanin biosynthesis genes in spinach.
    Cai X; Lin L; Wang X; Xu C; Wang Q
    Genome; 2018 Jul; 61(7):487-496. PubMed ID: 29787681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.