These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 2026190)

  • 1. Visual size cues in the programming of manipulative forces during precision grip.
    Gordon AM; Forssberg H; Johansson RS; Westling G
    Exp Brain Res; 1991; 83(3):477-82. PubMed ID: 2026190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The integration of haptically acquired size information in the programming of precision grip.
    Gordon AM; Forssberg H; Johansson RS; Westling G
    Exp Brain Res; 1991; 83(3):483-8. PubMed ID: 2026191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of human precision grip. III. Integration of visual size cues during the programming of isometric forces.
    Gordon AM; Forssberg H; Johansson RS; Eliasson AC; Westling G
    Exp Brain Res; 1992; 90(2):399-403. PubMed ID: 1397154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of sensory information during the programming of precision grip: comments on the contributions of size cues.
    Gordon AM; Forssberg H; Johansson RS; Westling G
    Exp Brain Res; 1991; 85(1):226-9. PubMed ID: 1884761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip.
    Johansson RS; Westling G
    Exp Brain Res; 1988; 71(1):59-71. PubMed ID: 3416958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The size of the visual size cue used for programming manipulative forces during precision grip.
    Mon-Williams M; Murray AH
    Exp Brain Res; 2000 Dec; 135(3):405-10. PubMed ID: 11146818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memory representations underlying motor commands used during manipulation of common and novel objects.
    Gordon AM; Westling G; Cole KJ; Johansson RS
    J Neurophysiol; 1993 Jun; 69(6):1789-96. PubMed ID: 8350123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Worst-case prediction strategy in force programming when visual information is obstructed.
    Kawai S; Mackenzie CL; Ivens CJ; Yamamoto T
    Percept Mot Skills; 2001 Jun; 92(3 Pt 2):1099-108. PubMed ID: 11565918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive force programming in the grip-lift task: the role of memory links between arbitrary cues and object weight.
    Ameli M; Dafotakis M; Fink GR; Nowak DA
    Neuropsychologia; 2008; 46(9):2383-8. PubMed ID: 18455203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anticipatory control of manipulative forces in Parkinson's disease.
    Gordon AM; Ingvarsson PE; Forssberg H
    Exp Neurol; 1997 Jun; 145(2 Pt 1):477-88. PubMed ID: 9217084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Failure to disrupt the 'sensorimotor' memory for lifting objects with a precision grip.
    Cole KJ; Potash M; Peterson C
    Exp Brain Res; 2008 Jan; 184(2):157-63. PubMed ID: 17717654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Old age impairs the use of arbitrary visual cues for predictive control of fingertip forces during grasp.
    Cole KJ; Rotella DL
    Exp Brain Res; 2002 Mar; 143(1):35-41. PubMed ID: 11907688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensorimotor memory and grip force control: does grip force anticipate a self-produced weight change when drinking with a straw from a cup?
    Nowak DA; Hermsdörfer J
    Eur J Neurosci; 2003 Nov; 18(10):2883-92. PubMed ID: 14656338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of human precision grip. II. Anticipatory control of isometric forces targeted for object's weight.
    Forssberg H; Kinoshita H; Eliasson AC; Johansson RS; Westling G; Gordon AM
    Exp Brain Res; 1992; 90(2):393-8. PubMed ID: 1397153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lifting a familiar object: visual size analysis, not memory for object weight, scales lift force.
    Cole KJ
    Exp Brain Res; 2008 Jul; 188(4):551-7. PubMed ID: 18443767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grasping an augmented object to analyse manipulative force control.
    Kawai S; Summers VA; Mackenzie CL; Ivens CJ; Yamamoto T
    Ergonomics; 2002 Dec; 45(15):1091-102. PubMed ID: 12569044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precision grip and Parkinson's disease.
    Fellows SJ; Noth J; Schwarz M
    Brain; 1998 Sep; 121 ( Pt 9)():1771-84. PubMed ID: 9762964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of visually perceived size to the scaling of fingertip forces when lifting a 'small' object.
    Kawai S; MacKenzie CL; Ivens CJ; Yamamoto T
    Percept Mot Skills; 2000 Dec; 91(3 Pt 1):827-35. PubMed ID: 11153857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-weight illusion and anticipatory grip force scaling following unilateral cortical brain lesion.
    Li Y; Randerath J; Goldenberg G; Hermsdörfer J
    Neuropsychologia; 2011 Apr; 49(5):914-923. PubMed ID: 21333663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticipatory scaling of grip forces when lifting objects of everyday life.
    Hermsdörfer J; Li Y; Randerath J; Goldenberg G; Eidenmüller S
    Exp Brain Res; 2011 Jul; 212(1):19-31. PubMed ID: 21541765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.