These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2026199)

  • 1. Coupled and uncoupled limb oscillations during paw-shake response.
    Koshland GF; Hoy MG; Smith JL; Zernicke RF
    Exp Brain Res; 1991; 83(3):587-97. PubMed ID: 2026199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting roles of inertial and muscle moments at knee and ankle during paw-shake response.
    Hoy MG; Zernicke RF; Smith JL
    J Neurophysiol; 1985 Nov; 54(5):1282-94. PubMed ID: 4078617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of intersegmental dynamics during rapid limb oscillations.
    Hoy MG; Zernicke RF
    J Biomech; 1986; 19(10):867-77. PubMed ID: 3782169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intralimb coordination of the paw-shake response: a novel mixed synergy.
    Smith JL; Hoy MG; Koshland GF; Phillips DM; Zernicke RF
    J Neurophysiol; 1985 Nov; 54(5):1271-81. PubMed ID: 4078616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paw-shake responses with joint immobilization: EMG changes with atypical feedback.
    Koshland GF; Smith JL
    Exp Brain Res; 1989; 77(2):361-73. PubMed ID: 2792282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous control of two rhythmical behaviors. II. Hindlimb walking with paw-shake response in spinal cat.
    Carter MC; Smith JL
    J Neurophysiol; 1986 Jul; 56(1):184-95. PubMed ID: 3746394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Afferent roles in hindlimb wipe-reflex trajectories: free-limb kinematics and motor patterns.
    Kargo WJ; Giszter SF
    J Neurophysiol; 2000 Mar; 83(3):1480-501. PubMed ID: 10712474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutable and immutable features of paw-shake responses after hindlimb deafferentation in the cat.
    Koshland GF; Smith JL
    J Neurophysiol; 1989 Jul; 62(1):162-73. PubMed ID: 2754470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromuscular patterns of stereotypic hindlimb behaviors in the first two postnatal months. III. Scratching and the paw-shake response in kittens.
    Bradley NS; Smith JL
    Brain Res; 1988 Jan; 466(1):69-82. PubMed ID: 3342332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous control of two rhythmical behaviors. I. Locomotion with paw-shake response in normal cat.
    Carter MC; Smith JL
    J Neurophysiol; 1986 Jul; 56(1):171-83. PubMed ID: 3746393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait-related motor patterns and hindlimb kinetics for the cat trot and gallop.
    Smith JL; Chung SH; Zernicke RF
    Exp Brain Res; 1993; 94(2):308-22. PubMed ID: 8359248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speed-related changes in hindlimb intersegmental dynamics during the swing phase of cat locomotion.
    Wisleder D; Zernicke RF; Smith JL
    Exp Brain Res; 1990; 79(3):651-60. PubMed ID: 2340881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scratch responses in normal cats: hindlimb kinematics and muscle synergies.
    Kuhta PC; Smith JL
    J Neurophysiol; 1990 Dec; 64(6):1653-67. PubMed ID: 2074455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stepping behaviors in chronic spinal cats with one hindlimb deafferented.
    Giuliani CA; Smith JL
    J Neurosci; 1987 Aug; 7(8):2537-46. PubMed ID: 3612253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotion of the hindlimbs after neurectomy of ankle flexors in intact and spinal cats: model for the study of locomotor plasticity.
    Carrier L; Brustein E; Rossignol S
    J Neurophysiol; 1997 Apr; 77(4):1979-93. PubMed ID: 9114249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle afferent contribution to control of paw shakes in normal cats.
    Prochazka A; Hulliger M; Trend P; Llewellyn M; Dürmüller N
    J Neurophysiol; 1989 Mar; 61(3):550-62. PubMed ID: 2709099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of bilateral lesions of the dorsolateral funiculi and dorsal columns at the level of the low thoracic spinal cord on the control of locomotion in the adult cat. I. Treadmill walking.
    Jiang W; Drew T
    J Neurophysiol; 1996 Aug; 76(2):849-66. PubMed ID: 8871204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive control for backward quadrupedal walking. IV. Hindlimb kinetics during stance and swing.
    Perell KL; Gregor RJ; Buford JA; Smith JL
    J Neurophysiol; 1993 Dec; 70(6):2226-40. PubMed ID: 8120579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crank inertial load has little effect on steady-state pedaling coordination.
    Fregly BJ; Zajac FE; Dairaghi CA
    J Biomech; 1996 Dec; 29(12):1559-67. PubMed ID: 8945654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and characteristics of airstepping in chronic spinal cats.
    Giuliani CA; Smith JL
    J Neurosci; 1985 May; 5(5):1276-82. PubMed ID: 3998821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.