These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 2026612)

  • 1. Singlet oxygen production from the reactions of ozone with biological molecules.
    Kanofsky JR; Sima P
    J Biol Chem; 1991 May; 266(14):9039-42. PubMed ID: 2026612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Singlet-oxygen generation at gas-liquid interfaces: a significant artifact in the measurement of singlet-oxygen yields from ozone-biomolecule reactions.
    Kanofsky JR; Sima PD
    Photochem Photobiol; 1993 Sep; 58(3):335-40. PubMed ID: 8234465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singlet oxygen chemiluminescence at gas-liquid interfaces: theoretical analysis with a one-dimensional model of singlet oxygen quenching and diffusion.
    Kanofsky JR; Sima PD
    Arch Biochem Biophys; 1994 Jul; 312(1):244-53. PubMed ID: 8031134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive absorption of ozone: an assay for reaction rates of ozone with sulfhydryl compounds and with other biological molecules.
    Kanofsky JR; Sima PD
    Methods Enzymol; 2000; 319():505-12. PubMed ID: 10907538
    [No Abstract]   [Full Text] [Related]  

  • 5. Reactive absorption of ozone by aqueous biomolecule solutions: implications for the role of sulfhydryl compounds as targets for ozone.
    Kanofsky JR; Sima PD
    Arch Biochem Biophys; 1995 Jan; 316(1):52-62. PubMed ID: 7840660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Singlet oxygen generation from the reaction of ozone with plant leaves.
    Kanofsky JR; Sima PD
    J Biol Chem; 1995 Apr; 270(14):7850-2. PubMed ID: 7713876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant potential of anaerobic human plasma: role of serum albumin and thiols as scavengers of carbon radicals.
    Soriani M; Pietraforte D; Minetti M
    Arch Biochem Biophys; 1994 Jul; 312(1):180-8. PubMed ID: 8031126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activated oxygen species and oxidation of food constituents.
    Korycka-Dahl MB; Richardson T
    CRC Crit Rev Food Sci Nutr; 1978; 10(3):209-41. PubMed ID: 215383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical.
    Tan DX; Hardeland R; Manchester LC; Poeggeler B; Lopez-Burillo S; Mayo JC; Sainz RM; Reiter RJ
    J Pineal Res; 2003 May; 34(4):249-59. PubMed ID: 12662346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of peroxynitrite with reduced nicotinamide nucleotides, the formation of hydrogen peroxide.
    Kirsch M; de Groot H
    J Biol Chem; 1999 Aug; 274(35):24664-70. PubMed ID: 10455133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of biologic molecules by ozone: the effect of pH.
    O'Neill CA; van der Vliet A; Hu ML; Kaur H; Cross CE; Louie S; Halliwell B
    J Lab Clin Med; 1993 Nov; 122(5):497-505. PubMed ID: 8228567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals.
    Regoli F; Winston GW
    Toxicol Appl Pharmacol; 1999 Apr; 156(2):96-105. PubMed ID: 10198274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Singlet molecular oxygen in biological systems: non-quenching of singlet oxygen-mediated chemiluminescence by superoxide dismutase.
    Goda K; Kimura T; Thayer AL; Kees K; Schaap AP
    Biochem Biophys Res Commun; 1974 Jun; 58(3):660-6. PubMed ID: 4836270
    [No Abstract]   [Full Text] [Related]  

  • 15. Alternatives to the 'water oxidation pathway' of biological ozone formation.
    Onyango AN
    J Chem Biol; 2016 Jan; 9(1):1-8. PubMed ID: 26855676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular antioxidants: from chemical to biochemical mechanisms.
    Chaudière J; Ferrari-Iliou R
    Food Chem Toxicol; 1999; 37(9-10):949-62. PubMed ID: 10541450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radical Formation in the Gas-Phase Ozonolysis of Deprotonated Cysteine.
    Khairallah GN; Maccarone AT; Pham HT; Benton TM; Ly T; da Silva G; Blanksby SJ; O'Hair RA
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):12947-51. PubMed ID: 26480331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of ozone-specific (OZAC) and oxygen radical (ORAC) antioxidant capacity assays for use with nasal lavage fluid.
    Rutkowski JM; Santiag LY; Ben-Jebria A; Ultman JS
    Toxicol In Vitro; 2011 Oct; 25(7):1406-13. PubMed ID: 21513792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of cholesterol autoxidation products in the pathogenesis of inflammatory diseases.
    Miyoshi N; Iuliano L; Tomono S; Ohshima H
    Biochem Biophys Res Commun; 2014 Apr; 446(3):702-8. PubMed ID: 24412245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the rates of ozonation of biological antioxidants and oleate and linoleate esters.
    Giamalva D; Church DF; Pryor WA
    Biochem Biophys Res Commun; 1985 Dec; 133(2):773-9. PubMed ID: 4084297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.