These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 2026632)

  • 21. Distal stem design and the torsional stability of cementless femoral stems.
    Kendrick JB; Noble PC; Tullos HS
    J Arthroplasty; 1995 Aug; 10(4):463-9. PubMed ID: 8523005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two- to 4-Year Followup of a Short Stem THA Construct: Excellent Fixation, Thigh Pain a Concern.
    Amendola RL; Goetz DD; Liu SS; Callaghan JJ
    Clin Orthop Relat Res; 2017 Feb; 475(2):375-383. PubMed ID: 27417852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An in vitro comparison of surface strain patterns in cementless femoral arthroplasty.
    Boggan RS
    Semin Arthroplasty; 1993 Jul; 4(3):143-53. PubMed ID: 10146280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A biomechanical comparison of four different cementless press-fit stems used in revision surgery for total knee replacements.
    Zdero R; Saidi K; Mason SA; Schemitsch EH; Naudie DD
    Proc Inst Mech Eng H; 2012 Nov; 226(11):848-57. PubMed ID: 23185955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High Survivorship With Cementless Stems and Cortical Strut Allografts for Large Femoral Bone Defects in Revision THA.
    Kim YH; Park JW; Kim JS; Rastogi D
    Clin Orthop Relat Res; 2015 Sep; 473(9):2990-3000. PubMed ID: 26013152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ex vivo postimplantation biomechanical properties of a press-fit cementless femoral stem with transfixation pin for canine total hip replacement.
    Saban C; Roels J; Deprey J; Massenzio M; Viguier E; Cachon T
    Am J Vet Res; 2022 Sep; 83(11):1-8. PubMed ID: 36136932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical comparison of newly designed stemless prosthesis and conventional hip prosthesis--an experimental study.
    Tai CL; Lee MS; Chen WP; Hsieh PH; Lee PC; Shih CH
    Biomed Mater Eng; 2005; 15(3):239-49. PubMed ID: 15912004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Late mechanical stability of the proximal coated AML prosthesis.
    Sugiyama H; Whiteside LA; Engh CA; Otani T
    Orthopedics; 1994 Jul; 17(7):583-8. PubMed ID: 7937372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of porous coating and collar support on early load transfer for a cementless hip prosthesis.
    Keaveny TM; Bartel DL
    J Biomech; 1993 Oct; 26(10):1205-16. PubMed ID: 8253825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical evaluation of fracture fixation constructs using a variable-angle locked periprosthetic femur plate system.
    Hoffmann MF; Burgers TA; Mason JJ; Williams BO; Sietsema DL; Jones CB
    Injury; 2014 Jul; 45(7):1035-41. PubMed ID: 24680467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of surface finish and of vertical ribs on the stability of a cemented femoral stem: an in vitro stair climbing test.
    Jamali AA; Lozynsky AJ; Harris WH
    J Arthroplasty; 2006 Jan; 21(1):122-8. PubMed ID: 16446196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of neck resection on torsional stability of cementless total hip replacement.
    Whiteside LA; White SE; McCarthy DS
    Am J Orthop (Belle Mead NJ); 1995 Oct; 24(10):766-70. PubMed ID: 8593558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems.
    Decking R; Puhl W; Simon U; Claes LE
    Clin Biomech (Bristol); 2006 Jun; 21(5):495-501. PubMed ID: 16457913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical evaluation of cadaver retrieval specimens of cementless bone-ingrown total hip arthroplasty femoral components.
    Whiteside LA; White SE; Engh CA; Head W
    J Arthroplasty; 1993 Apr; 8(2):147-55. PubMed ID: 8478633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical consequences of bone ingrowth in a hip prosthesis inserted without cement.
    Keaveny TM; Bartel DL
    J Bone Joint Surg Am; 1995 Jun; 77(6):911-23. PubMed ID: 7782364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased risk of periprosthetic femur fractures associated with a unique cementless stem design.
    Watts CD; Abdel MP; Lewallen DG; Berry DJ; Hanssen AD
    Clin Orthop Relat Res; 2015 Jun; 473(6):2045-53. PubMed ID: 25502478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Effects of Interlocking a Universal Hip Cementless Stem on Implant Subsidence and Mechanical Properties of Cadaveric Canine Femora.
    Buks Y; Wendelburg KL; Stover SM; Garcia-Nolen TC
    Vet Surg; 2016 Feb; 45(2):155-64. PubMed ID: 26767439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Total hip arthroplasty with a cemented, polished, collared femoral stem and a cementless acetabular component. A follow-up study at a minimum of ten years.
    Firestone DE; Callaghan JJ; Liu SS; Goetz DD; Sullivan PM; Vittetoe DA; Johnston RC
    J Bone Joint Surg Am; 2007 Jan; 89(1):126-32. PubMed ID: 17200319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modified metaphyseal-loading anterolaterally flared anatomic femoral stem: five- to nine-year prospective follow-up evaluation and results of three-dimensional finite element analysis.
    Kokubo Y; Uchida K; Oki H; Negoro K; Nagamune K; Kawaguchi S; Takeno K; Yayama T; Nakajima H; Sugita D; Yoshida A; Baba H
    Artif Organs; 2013 Feb; 37(2):175-82. PubMed ID: 23009086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.