These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 2026639)
1. Effect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation. Takahara A; Coury AJ; Hergenrother RW; Cooper SL J Biomed Mater Res; 1991 Mar; 25(3):341-56. PubMed ID: 2026639 [TBL] [Abstract][Full Text] [Related]
2. Long term in vitro biostability of segmented polyisobutylene-based thermoplastic polyurethanes. Cozzens D; Ojha U; Kulkarni P; Faust R; Desai S J Biomed Mater Res A; 2010 Dec; 95(3):774-82. PubMed ID: 20725977 [TBL] [Abstract][Full Text] [Related]
3. Effect of soft segment chemistry on the biostability of segmented polyurethanes. II. In vitro hydrolytic degradation and lipid sorption. Takahara A; Hergenrother RW; Coury AJ; Cooper SL J Biomed Mater Res; 1992 Jun; 26(6):801-18. PubMed ID: 1527102 [TBL] [Abstract][Full Text] [Related]
4. Effects of types and length of soft-segments on the physical properties and blood compatibility of polyurethanes. Chang CH; Tsao CT; Chang KY; Chen SH; Han JL; Hsieh KH Biomed Mater Eng; 2012; 22(6):373-82. PubMed ID: 23114466 [TBL] [Abstract][Full Text] [Related]
5. Effect of soft-segment chemistry on polyurethane biostability during in vitro fatigue loading. Wiggins MJ; MacEwan M; Anderson JM; Hiltner A J Biomed Mater Res A; 2004 Mar; 68(4):668-83. PubMed ID: 14986322 [TBL] [Abstract][Full Text] [Related]
6. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849 [TBL] [Abstract][Full Text] [Related]
7. Effect of surface hydrophilicity on ex vivo blood compatibility of segmented polyurethanes. Takahara A; Okkema AZ; Cooper SL; Coury AJ Biomaterials; 1991 Apr; 12(3):324-34. PubMed ID: 1854901 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of in vitro oxidative degradation of poly(carbonate urethanes) for biostability screening. Dempsey DK; Carranza C; Chawla CP; Gray P; Eoh JH; Cereceres S; Cosgriff-Hernandez EM J Biomed Mater Res A; 2014 Oct; 102(10):3649-65. PubMed ID: 24265203 [TBL] [Abstract][Full Text] [Related]
9. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310 [TBL] [Abstract][Full Text] [Related]
10. Physical and blood-contacting properties of polyurethanes based on a sulfonic acid-containing diol chain extender. Okkema AZ; Visser SA; Cooper SL J Biomed Mater Res; 1991 Nov; 25(11):1371-95. PubMed ID: 1797809 [TBL] [Abstract][Full Text] [Related]
11. Effect of polyol type on the surface structure of sulfonate-containing polyurethanes. Silver JH; Lewis KB; Ratner BD; Cooper SL J Biomed Mater Res; 1993 Jun; 27(6):735-45. PubMed ID: 8408103 [TBL] [Abstract][Full Text] [Related]
12. Effect of polyurethane surface chemistry on its lipid sorption behavior. Takahara A; Takahashi K; Kajiyama T J Biomater Sci Polym Ed; 1993; 5(3):183-96. PubMed ID: 8155607 [TBL] [Abstract][Full Text] [Related]
13. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates. Yin S; Xia Y; Jia Q; Hou ZS; Zhang N J Biomater Sci Polym Ed; 2017 Jan; 28(1):119-138. PubMed ID: 27774855 [TBL] [Abstract][Full Text] [Related]
14. In vivo biostability of polyether polyurethanes with polyethylene oxide surface-modifying end groups; resistance to biologic oxidation and stress cracking. Ebert M; Ward B; Anderson J; McVenes R; Stokes K J Biomed Mater Res A; 2005 Oct; 75(1):175-84. PubMed ID: 16041797 [TBL] [Abstract][Full Text] [Related]
15. Bulk, surface, and blood-contacting properties of polyetherurethanes modified with polyethylene oxide. Okkema AZ; Grasel TG; Zdrahala RJ; Solomon DD; Cooper SL J Biomater Sci Polym Ed; 1989; 1(1):43-62. PubMed ID: 2488846 [TBL] [Abstract][Full Text] [Related]
16. Biostability and macrophage-mediated foreign body reaction of silicone-modified polyurethanes. Christenson EM; Dadsetan M; Hiltner A J Biomed Mater Res A; 2005 Aug; 74(2):141-55. PubMed ID: 16201029 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of segmented polyurethanes based on amphiphilic polyether diols. Lan PN; Corneillie S; Schacht E; Davies M; Shard A Biomaterials; 1996 Dec; 17(23):2273-80. PubMed ID: 8968523 [TBL] [Abstract][Full Text] [Related]
18. Effect of polyol molecular weight on the physical properties and haemocompatibility of polyurethanes containing polyethylene oxide macroglycols. Silver JH; Myers CW; Lim F; Cooper SL Biomaterials; 1994 Jul; 15(9):695-704. PubMed ID: 7948592 [TBL] [Abstract][Full Text] [Related]
19. Degradation of medical-grade polyurethane elastomers: the effect of hydrogen peroxide in vitro. Meijs GF; McCarthy SJ; Rizzardo E; Chen YC; Chatelier RC; Brandwood A; Schindhelm K J Biomed Mater Res; 1993 Mar; 27(3):345-56. PubMed ID: 8360204 [TBL] [Abstract][Full Text] [Related]
20. In vivo biostability of polysiloxane polyether polyurethanes: resistance to metal ion oxidation. Ward B; Anderson J; Ebert M; McVenes R; Stokes K J Biomed Mater Res A; 2006 May; 77(2):380-9. PubMed ID: 16425243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]