BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 20271)

  • 1. Peptides as stimulators of egg development neurosecretory hormone release in the mosquito Aedes aegypti.
    Chang YY; Judson CL
    Comp Biochem Physiol C Comp Pharmacol; 1977; 57(2):147-51. PubMed ID: 20271
    [No Abstract]   [Full Text] [Related]  

  • 2. An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti.
    Brown MR; Clark KD; Gulia M; Zhao Z; Garczynski SF; Crim JW; Suderman RJ; Strand MR
    Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5716-21. PubMed ID: 18391205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trypsin inhibitor from Leucaena leucocephala seeds delays and disrupts the development of Aedes aegypti, a multiple-disease vector.
    Almeida Filho LC; de Souza TM; Tabosa PM; Soares NG; Rocha-Bezerra LC; Vasconcelos IM; Carvalho AF
    Pest Manag Sci; 2017 Jan; 73(1):181-187. PubMed ID: 27040615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Egg maturation and ecdysiotropic activity in extracts of mosquito (Aedes aegypti) heads.
    Wheelock GD; Hagedorn HH
    Gen Comp Endocrinol; 1985 Nov; 60(2):196-203. PubMed ID: 4065529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Egg chorion tanning in Aedes aegypti mosquito.
    Li J
    Comp Biochem Physiol A Physiol; 1994 Dec; 109(4):835-43. PubMed ID: 7828027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feeding the mosquito Aedes aegypti with TMOF and its analogs; effect on trypsin biosynthesis and egg development.
    Borovsky D; Mahmood F
    Regul Pept; 1995 Jun; 57(3):273-81. PubMed ID: 7480877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae).
    Coon KL; Brown MR; Strand MR
    Parasit Vectors; 2016 Jun; 9(1):375. PubMed ID: 27363842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique specificity of in vitro inhibition of mosquito midgut trypsin-like activity correlates with in vivo inhibition of malaria parasite infectivity.
    Shahabuddin M; Criscio M; Kaslow DC
    Exp Parasitol; 1995 Mar; 80(2):212-9. PubMed ID: 7534722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus.
    Vargas HC; Farnesi LC; Martins AJ; Valle D; Rezende GL
    J Insect Physiol; 2014 Mar; 62():54-60. PubMed ID: 24534672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti.
    Gulia-Nuss M; Elliot A; Brown MR; Strand MR
    J Insect Physiol; 2015 Nov; 82():8-16. PubMed ID: 26255841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of ICount software, a precise and fast egg counting tool for the mosquito vector Aedes aegypti.
    Gaburro J; Duchemin JB; Paradkar PN; Nahavandi S; Bhatti A
    Parasit Vectors; 2016 Nov; 9(1):590. PubMed ID: 27863526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraspecific variation in desiccation survival time of Aedes aegypti (L.) mosquito eggs of Australian origin.
    Faull KJ; Williams CR
    J Vector Ecol; 2015 Dec; 40(2):292-300. PubMed ID: 26611964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enforced egg-retention and its effects on vitellogenesis in the mosquito, Aedes aegypti.
    Else JG; Judson CL
    J Med Entomol; 1972 Dec; 9(6):527-30. PubMed ID: 4654686
    [No Abstract]   [Full Text] [Related]  

  • 14. The stimulation of bovine caudal epididymal sperm forward motility by bovine cumulus-egg complexes in vitro.
    Bradley MP; Garbers DL
    Biochem Biophys Res Commun; 1983 Sep; 115(3):777-87. PubMed ID: 6414478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extremely Long Viability of Aedes aegypti (Diptera: Culicidae) Eggs Stored Under Normal Room Condition.
    Mayilsamy M
    J Med Entomol; 2019 Apr; 56(3):878-880. PubMed ID: 30649399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-scale analysis of the associations among egg, larval and pupal surveys and the presence and abundance of adult female Aedes aegypti (Stegomyia aegypti) in the city of Merida, Mexico.
    Manrique-Saide P; Coleman P; McCall PJ; Lenhart A; Vázquez-Prokopec G; Davies CR
    Med Vet Entomol; 2014 Sep; 28(3):264-72. PubMed ID: 24797405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of mating on autogenous egg development in the mosquito, Aedes taeniorhynchus.
    O'Meara GF; Evans DG
    J Insect Physiol; 1976; 22(4):613-7. PubMed ID: 950480
    [No Abstract]   [Full Text] [Related]  

  • 18. Forced egg retention and oviposition behavior of malaria, dengue and filariasis vectors to a topical repellent diethyl-phenylacetamide.
    Seenivasagan T; Iqbal ST; Guha L
    Indian J Exp Biol; 2015 Jul; 53(7):440-5. PubMed ID: 26245028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of α,β-unsaturated lactones on larval survival and gut trypsin as well as oviposition response of Aedes aegypti.
    Barros ME; Freitas JC; Santos GK; da Silva RC; Pontual EV; Paiva PM; Napoleão TH; Navarro DM; Menezes PH
    Exp Parasitol; 2015 Sep; 156():37-41. PubMed ID: 26044355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Autogenesis and cerebral neurosecretion in Aedes detritus (Haliday, 1833) (Diptera - Culicidae].
    Guilvard E; Raabe M; Rioux JA
    C R Acad Hebd Seances Acad Sci D; 1976 Oct; 283(10):1217-20. PubMed ID: 827359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.