These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 20271)

  • 21. Recent Changes in the Local Distribution of Aedes aegypti (Diptera: Culicidae) in South Florida, USA.
    Hopperstad KA; Reiskind MH
    J Med Entomol; 2016 Jul; 53(4):836-842. PubMed ID: 27113103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Follicular non-steroidal regulators.
    Channing CP
    Adv Exp Med Biol; 1979; 112():327-43. PubMed ID: 223391
    [No Abstract]   [Full Text] [Related]  

  • 23. A novel trypsin Kazal-type inhibitor from Aedes aegypti with thrombin coagulant inhibitory activity.
    Watanabe RM; Soares TS; Morais-Zani K; Tanaka-Azevedo AM; Maciel C; Capurro ML; Torquato RJ; Tanaka AS
    Biochimie; 2010 Aug; 92(8):933-9. PubMed ID: 20363282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The medial neurosecretory cells and egg maturation in mosquitoes.
    Lea AO
    J Insect Physiol; 1967 Jan; 13(3):419-29. PubMed ID: 4382511
    [No Abstract]   [Full Text] [Related]  

  • 25. Oocyte maturation inhibitor: a 1981 perspective.
    Tsafriri A; Bar-Ami S
    Adv Exp Med Biol; 1982; 147():145-59. PubMed ID: 6295078
    [No Abstract]   [Full Text] [Related]  

  • 26. First insights into insecticidal activity against Aedes aegypti and partial biochemical characterization of a novel low molecular mass chymotrypsin-trypsin inhibitor purified from Lonchocarpus sericeus seeds.
    Almeida Filho LC; Tabosa PM; Hissa DC; Vasconcelos IM; Carvalho AF
    Pest Manag Sci; 2018 Jun; 74(6):1362-1373. PubMed ID: 29193604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional analysis of AeSCP-2 using gene expression knockdown in the yellow fever mosquito, Aedes aegypti.
    Blitzer EJ; Vyazunova I; Lan Q
    Insect Mol Biol; 2005 Jun; 14(3):301-7. PubMed ID: 15926899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF.
    Borovsky D; Meola SM
    Arch Insect Biochem Physiol; 2004 Mar; 55(3):124-39. PubMed ID: 14981657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cold season mortality and hatching behavior of Aedes aegypti L. (Diptera: Culicidae) eggs in Buenos Aires City, Argentina.
    Fischer S; Alem IS; De Majo MS; Campos RE; Schweigmann N
    J Vector Ecol; 2011 Jun; 36(1):94-9. PubMed ID: 21635646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Wolbachia symbiont in Aedes aegypti disrupts mosquito egg development to a greater extent when mosquitoes feed on nonhuman versus human blood.
    McMeniman CJ; Hughes GL; O'Neill SL
    J Med Entomol; 2011 Jan; 48(1):76-84. PubMed ID: 21337952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The neurosecretory cells of the brain of Aedes aegypti in relation to larval molt, metamorphosis and ovarian development.
    Larsen JR; Broadbent A
    Trans Am Microsc Soc; 1968 Oct; 87(4):395-410. PubMed ID: 4176378
    [No Abstract]   [Full Text] [Related]  

  • 32. Control of follicular epithelium development and vitelline envelope formation in the mosquito; role of juvenile hormone and 20-hydroxyecdysone.
    Raikhel AS; Lea AO
    Tissue Cell; 1991; 23(4):577-91. PubMed ID: 1926140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of the brain hormone on retention of blood in the mid-gut of the mosquito Aedes aegypti (L). II. Early elimination following removal of the medial neurosecretory cells of the brain.
    Cole SJ; Gillett JD
    Proc R Soc Lond B Biol Sci; 1978 Jun; 202(1147):307-11. PubMed ID: 28529
    [No Abstract]   [Full Text] [Related]  

  • 34. Reevaluation of the role of early trypsin activity in the transcriptional activation of the late trypsin gene in the mosquito Aedes aegypti.
    Lu SJ; Pennington JE; Stonehouse AR; Mobula MM; Wells MA
    Insect Biochem Mol Biol; 2006 Apr; 36(4):336-43. PubMed ID: 16551547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of juvenile hormone titers by means of LC-MS/MS/MS and a juvenile hormone-responsive Gal4/UAS system in Aedes aegypti mosquitoes.
    Zhao B; Hou Y; Wang J; Kokoza VA; Saha TT; Wang XL; Lin L; Zou Z; Raikhel AS
    Insect Biochem Mol Biol; 2016 Oct; 77():69-77. PubMed ID: 27530057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of thermal heterogeneity and egg mortality on differences in the population dynamics of Aedes aegypti (Diptera: Culicidae) over short distances in temperate Argentina.
    De Majo MS; Fischer S; Otero M; Schweigmann N
    J Med Entomol; 2013 May; 50(3):543-51. PubMed ID: 23802448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frizzled 2 is a key component in the regulation of TOR signaling-mediated egg production in the mosquito Aedes aegypti.
    Weng SC; Shiao SH
    Insect Biochem Mol Biol; 2015 Jun; 61():17-24. PubMed ID: 25890109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Early trypsin activity is part of the signal transduction system that activates transcription of the late trypsin gene in the midgut of the mosquito, Aedes aegypti.
    Barillas-Mury CV; Noriega FG; Wells MA
    Insect Biochem Mol Biol; 1995 Feb; 25(2):241-6. PubMed ID: 7711754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoperiod and temperature influences on diapause in eggs of the floodwater mosquito Aedes vexans (Meigen) (Diptera: Culicidae).
    McHaffey DG
    J Med Entomol; 1972 Dec; 9(6):564-71. PubMed ID: 4654693
    [No Abstract]   [Full Text] [Related]  

  • 40. The influence of the brain hormone on retention of blood in the mid-gut of the mosquito Aedes aegypti (L.).
    Gillett JD; Cole SJ; Reeves D
    Proc R Soc Lond B Biol Sci; 1975 Aug; 190(1100):359-67. PubMed ID: 240165
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.