BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 2027301)

  • 41. Development of drug resistance in cultured clonogenic leukemic blast cells during the clinical course of myeloblastic leukemia.
    Asano Y; Okamura S; Shibuya T; Morioka E; Hirota Y; Niho Y
    Oncology; 1989; 46(5):339-42. PubMed ID: 2779949
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Schedule-dependent interaction of cytarabine plus doxorubicin or cytarabine plus mitoxantrone in acute myelocytic leukemia cells in culture.
    Fountzilas G; Inoue S; Ohnuma T
    Leukemia; 1990 May; 4(5):321-4. PubMed ID: 2388478
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of interferon and retinoic acid on the growth and differentiation of clonogenic leukemic cells from acute myelogenous leukemia patients treated with recombinant leukocyte-alpha A interferon.
    Gallagher RE; Lurie KJ; Leavitt RD; Wiernik PH
    Leuk Res; 1987; 11(7):609-19. PubMed ID: 3475513
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-dose mitoxantrone induces programmed cell death or apoptosis in human myeloid leukemia cells.
    Bhalla K; Ibrado AM; Tourkina E; Tang C; Grant S; Bullock G; Huang Y; Ponnathpur V; Mahoney ME
    Blood; 1993 Nov; 82(10):3133-40. PubMed ID: 8219202
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Balance between proliferation and apoptosis in leukemic cell lines resistant to cytostatics.
    Macnamara B; Palucka KA; Porwit-MacDonald A
    Leuk Lymphoma; 1999 Dec; 36(1-2):179-89. PubMed ID: 10613463
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro effect of r-verapamil on acute myelogenous leukemia blast cells: studies of cytokine secretion and cytokine-dependent blast proliferation.
    Bruserud O; Nesthus I; Pawelec G
    Cancer Chemother Pharmacol; 1995; 37(1-2):70-8. PubMed ID: 7497600
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective cytotoxicity to human leukemic myeloblasts produced by oligodeoxyribonucleotide phosphorothioates complementary to p53 nucleotide sequences.
    Bayever E; Haines KM; Iversen PL; Ruddon RW; Pirruccello SJ; Mountjoy CP; Arneson MA; Smith LJ
    Leuk Lymphoma; 1994 Jan; 12(3-4):223-31. PubMed ID: 8167553
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vitro effects of interleukin-12 on the growth of blast progenitors in acute myelogenous leukemia.
    Miyauchi J
    Leukemia; 2001 Dec; 15(12):1996-8. PubMed ID: 11753626
    [No Abstract]   [Full Text] [Related]  

  • 49. Prognostic implications of blast self-renewal capacity in acute myelocytic-leukemia.
    Nara N
    Int J Oncol; 1993 Aug; 3(2):365-8. PubMed ID: 21573375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biochemical lesions in DNA associated with the antiproliferative effects of mitoxantrone in the hepatoma cell.
    Ellis AL; Randolph JK; Conway BR; Gewirtz DA
    Biochem Pharmacol; 1990 May; 39(10):1549-56. PubMed ID: 2337411
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mitoxantrone sensitivity of human hematopoietic cell lines.
    Roos G
    Leuk Res; 1987; 11(6):519-24. PubMed ID: 3600027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. AMSA: in vivo log cell kill for leukemic clonogenic cells versus toxicity for normal hemopoietic stem cells in a rat model for human acute myelocytic leukemia (BNML).
    Hagenbeek A; Martens AC
    Eur J Cancer Clin Oncol; 1986 Oct; 22(10):1255-8. PubMed ID: 3469100
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasma kinetics of mitoxantrone in leukemic patients.
    Hulhoven R; Dumont E; Harvengt C
    Med Oncol Tumor Pharmacother; 1984; 1(3):201-4. PubMed ID: 6544900
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potentiation of cytotoxicity of mitoxantrone toward CHO-K1 cells in vitro by dipyridamole.
    Desai PB; Sridhar R
    Pharm Res; 1992 Feb; 9(2):178-81. PubMed ID: 1553337
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effectiveness of mitoxantrone on the proliferation of cell cultures derived from malignant mesenchymal tumors of human origin.
    Dietel M; Arps H; Gerding D; Trapp M; Sieck M; Niendorf A
    J Cancer Res Clin Oncol; 1988; 114(2):197-203. PubMed ID: 3350853
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Precise Nanostructure of Folate-Overhung Mitoxantrone DNA Tetrahedron for Targeted Capture Leukemia.
    Bu YZ; Xu JR; Luo Q; Chen M; Mu LM; Lu WL
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32429472
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Studies towards the synthesis of dicarboxylic acid metabolite of mitoxantrone:
    Hrynchak I; Sousa E; de Lourdes Bastos M; Pinto M; Costa VM
    Porto Biomed J; 2017; 2(5):220-221. PubMed ID: 32258719
    [No Abstract]   [Full Text] [Related]  

  • 58. Mitoxantrone: a review of its pharmacological properties and use in acute nonlymphoblastic leukaemia.
    Dunn CJ; Goa KL
    Drugs Aging; 1996 Aug; 9(2):122-47. PubMed ID: 8820798
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 1-beta-D-arabinofuranosylcytosine-, mitoxantrone-, and paclitaxel-induced apoptosis in HL-60 cells: improved method for detection of internucleosomal DNA fragmentation.
    Ray S; Ponnathpur V; Huang Y; Tang C; Mahoney ME; Ibrado AM; Bullock G; Bhalla K
    Cancer Chemother Pharmacol; 1994; 34(5):365-71. PubMed ID: 7915211
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of pharmacologically relevant concentrations of mitoxantrone on the in vitro growth of leukemic blast progenitors.
    Grant S; Arlin Z; Gewirtz D; Feldman E
    Leukemia; 1991 Apr; 5(4):336-9. PubMed ID: 2027301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.