These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2027829)

  • 21. Energy supplementation of laying hen feed and drinking water.
    Damron BL; Sloan DR
    Poult Sci; 1990 Oct; 69(10):1806-8. PubMed ID: 2263557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of day to day variation of dietary energy on residual feed intake of laying hens.
    D'Alfonso TH; Manbeck HB; Roush WB
    Poult Sci; 1996 Mar; 75(3):362-9. PubMed ID: 8778730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic parameters of feed efficiency traits in laying period of chickens.
    Yuan J; Dou T; Ma M; Yi G; Chen S; Qu L; Shen M; Qu L; Wang K; Yang N
    Poult Sci; 2015 Jul; 94(7):1470-5. PubMed ID: 26009751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Residual feed consumption in laying hens. 2. Genetic variation and correlations.
    Luiting P; Urff EM
    Poult Sci; 1991 Aug; 70(8):1663-72. PubMed ID: 1924085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dietary sulfur amino acid level and energy utilization in laying hens.
    Reid BL; Maiorino PM
    Poult Sci; 1984 Dec; 63(12):2408-13. PubMed ID: 6531329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Energy metabolism in laying hens of different body weight genotypes].
    Klein M; Neubert M; Strobel E; Hoffmann L
    Arch Tierernahr; 1998; 51(4):263-77. PubMed ID: 9850795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of the energy metabolism of two breeds of hens and their cross using respiration calorimetry.
    Farrell DJ
    Br Poult Sci; 1975 Mar; 16(2):103-13. PubMed ID: 1139346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response surface approach to studying the protein and energy requirements of laying hens.
    Pesti GM
    Poult Sci; 1991 Jan; 70(1):103-14. PubMed ID: 2017405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetics of alternative definitions of feed efficiency in grazing lactating dairy cows.
    Hurley AM; López-Villalobos N; McParland S; Lewis E; Kennedy E; O'Donovan M; Burke JL; Berry DP
    J Dairy Sci; 2017 Jul; 100(7):5501-5514. PubMed ID: 28478005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of calcium and environmental temperature on performance of first-cycle (phase 1) commercial leghorns.
    Roland DA; Bryant MM; Rabon HW; Self J
    Poult Sci; 1996 Jan; 75(1):62-8. PubMed ID: 8650114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-breed rotational crossbreds of Montbéliarde, Viking Red, and Holstein compared with Holstein cows for feed efficiency, income over feed cost, and residual feed intake.
    Shonka-Martin BN; Heins BJ; Hansen LB
    J Dairy Sci; 2019 Apr; 102(4):3661-3673. PubMed ID: 30772023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Divergent selection for growth in Japanese quail under split and complete nutritional environments. 5. Feed intake and efficiency patterns following nineteen generations of selection.
    Marks HL
    Poult Sci; 1991 May; 70(5):1047-56. PubMed ID: 1852682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle.
    Nkrumah JD; Okine EK; Mathison GW; Schmid K; Li C; Basarab JA; Price MA; Wang Z; Moore SS
    J Anim Sci; 2006 Jan; 84(1):145-53. PubMed ID: 16361501
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy utilization in pigs selected for high and low residual feed intake.
    Barea R; Dubois S; Gilbert H; Sellier P; van Milgen J; Noblet J
    J Anim Sci; 2010 Jun; 88(6):2062-72. PubMed ID: 20154162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ability of commercial laying hens producing different egg outputs to meet their methionine and energy requirements when fed the same diet.
    Harms RH; Russell GB
    Poult Sci; 1996 Apr; 75(4):519-21. PubMed ID: 8786942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics of feed efficiency within and across lactation in dairy cows and the effect of genetic selection.
    Hurley AM; Lopez-Villalobos N; McParland S; Lewis E; Kennedy E; O'Donovan M; Burke JL; Berry DP
    J Dairy Sci; 2018 Feb; 101(2):1267-1280. PubMed ID: 29174146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Laying hen productivity as affected by energy, supplemental fat, and linoleic acid concentration of the diet.
    Grobas S; Mendez J; De Blas C; Mateos GG
    Poult Sci; 1999 Nov; 78(11):1542-51. PubMed ID: 10560827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship between dietary fiber and nutrient density and its effect on energy balance, egg yolk cholesterol and hen performance.
    Vargas RE; Naber EC
    J Nutr; 1984 Apr; 114(4):645-52. PubMed ID: 6325644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of level of fiber of the rearing phase diets on egg production, digestive tract traits, and body measurements of brown egg-laying hens fed diets differing in energy concentration.
    Guzmán P; Saldaña B; Bouali O; Cámara L; Mateos GG
    Poult Sci; 2016 Aug; 95(8):1836-47. PubMed ID: 26976899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of genetic selection for antibody production against sheep blood cells on energy metabolism in laying hens.
    Mashaly MM; Heetkamp MJ; Parmentier HK; Schrama JW
    Poult Sci; 2000 Apr; 79(4):519-24. PubMed ID: 10780647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.