These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 202831)

  • 1. Is serotonin a chemical transmitter in the frog taste organ?
    Morimoto K; Sato M
    Life Sci; 1977 Dec; 21(11):1685-95. PubMed ID: 202831
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of monoamines in afferent synaptic transmission in frog taste organ.
    Morimoto K; Sato M
    Jpn J Physiol; 1982; 32(5):855-71. PubMed ID: 6130181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Significance of serotonin in the activity of the taste receptor apparatus of the frog Rana temporaria].
    Esakov AI; Golubtsov KV; Solov'eva NA
    Zh Evol Biokhim Fiziol; 1983; 19(1):62-7. PubMed ID: 6601342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of local anesthetics on frog taste cell responses.
    Akaike N; Sato M
    Jpn J Physiol; 1975; 25(5):585-97. PubMed ID: 1085381
    [No Abstract]   [Full Text] [Related]  

  • 5. Depression of frog gustatory neural responses to quinine-HCl after adaptation of the tongue to various taste stimuli.
    Sugmioto K; Sato T
    Experientia; 1978 Feb; 34(2):196-7. PubMed ID: 304813
    [No Abstract]   [Full Text] [Related]  

  • 6. Latency of taste nerve signals in frog (Rana catesbeiana).
    Sato T
    Experientia; 1976; 32(7):877-9. PubMed ID: 1085261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pysicochemical studies of taste reception. V. Suppressive effect of salts on sugar response of the frog.
    Miyake M; Kamo N; Kurihara K; Kobatake Y
    Biochim Biophys Acta; 1976 Jul; 436(4):856-62. PubMed ID: 1085165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of slow hyperpolarizing potentials in frog taste cells induced by glossopharyngeal nerve stimulation.
    Sato T; Okada Y; Toda K
    Chem Senses; 2004 Oct; 29(8):651-7. PubMed ID: 15466810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt taste responses in the frog glossopharyngeal nerve: different receptor sites for Mg2+ and Na+.
    Kitada Y
    Brain Res; 1986 Aug; 380(1):172-5. PubMed ID: 3489501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-synaptic transformation of gustatory receptor potential by stimulation of the parasympathetic fiber of the frog glossopharyngeal nerve.
    Sato T; Miyamoto T; Okada Y; Fujiyama R
    Chem Senses; 2001 Jan; 26(1):79-84. PubMed ID: 11124218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An initial phasic depolarization exists in the receptor potential of taste cells.
    Sato T
    Experientia; 1977 Sep; 33(9):1165-7. PubMed ID: 302219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of antidromic stimulation of the glossopharyngeal nerve on afferent discharges occurring with and without sensory stimulation of the frog tongue.
    Murayama N; Ishiko N
    Neurosci Lett; 1985 Sep; 60(1):95-9. PubMed ID: 3877259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The neurophysiological changes in the taste reactions of the frog glossopharyngeal nerve evoked by the chronic administration of ethanol].
    Solov'eva NA; Nikitina AA
    Biull Eksp Biol Med; 1993 Oct; 116(10):345-7. PubMed ID: 8117943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does an initial phasic response exist in the receptor potential of taste cells?
    Sato T
    Experientia; 1976 Nov; 32(11):1426-8. PubMed ID: 1086797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tonic activity of parasympathetic efferent nerve fibers hyperpolarizes the resting membrane potential of frog taste cells.
    Sato T; Nishishita K; Kato Y; Okada Y; Toda K
    Chem Senses; 2006 May; 31(4):307-13. PubMed ID: 16469796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taste transduction mechanism: similar effects of various modifications of gustatory receptors on neural responses to chemical and electrical stimulation in the frog.
    Kashiwayanagi M; Yoshii K; Kobatake Y; Kurihara K
    J Gen Physiol; 1981 Sep; 78(3):259-75. PubMed ID: 6173463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mouse taste buds use serotonin as a neurotransmitter.
    Huang YJ; Maruyama Y; Lu KS; Pereira E; Plonsky I; Baur JE; Wu D; Roper SD
    J Neurosci; 2005 Jan; 25(4):843-7. PubMed ID: 15673664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of topically applied D-tubocurarine on the taste-induced electrical nerve activity in the frog.
    Steiner JE; Gadoth N; Moses SW
    Confin Neurol; 1973; 35(4):248-56. PubMed ID: 4354385
    [No Abstract]   [Full Text] [Related]  

  • 19. Gustatory responsiveness of fibers in the hamster glossopharyngeal nerve.
    Hanamori T; Miller IJ; Smith DV
    J Neurophysiol; 1988 Aug; 60(2):478-98. PubMed ID: 3171639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response properties of the pharyngeal branch of the glossopharyngeal nerve for umami taste in mice and rats.
    Kitagawa J; Takahashi Y; Matsumoto S; Shingai T
    Neurosci Lett; 2007 Apr; 417(1):42-5. PubMed ID: 17321681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.