BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 202883)

  • 1. Correlation between drug-induced supersensitivity of dopamine dependent striatal mechanisms and the increase in striatal content of the Ca2+ regulated protein activator of cAMP phosphodiesterase.
    Gnegy ME; Lucchelli A; Costa E
    Naunyn Schmiedebergs Arch Pharmacol; 1977 Dec; 301(2):121-7. PubMed ID: 202883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of dopamine stimulation of striatal adenylate cyclase by an endogenous Ca++ -binding protein.
    Gnegy ME; Uzunov P; Costa
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):3887-90. PubMed ID: 186777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subsensitivity of the rat striatal dopaminergic system after treatment with bromocriptine: effects on [3H]spiperone binding and dopamine-stimulated cyclic AMP formation.
    Quik M; Iversen LL
    Naunyn Schmiedebergs Arch Pharmacol; 1978 Sep; 304(2):141-5. PubMed ID: 212684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of dopamine receptor sensitivity by an endogenous protein activator or adenylate cyclase.
    Costa E; Gnegy MG; Uzunov P
    Naunyn Schmiedebergs Arch Pharmacol; 1977; 297 Suppl 1():S47-8. PubMed ID: 193053
    [No Abstract]   [Full Text] [Related]  

  • 5. Dopamine-sensitive adenylate cyclase and cAMP phosphodiesterase in substantia nigra and corpus striatum of rat brain.
    Traficante LJ; Friedman E; Oleshansky MA; Gershon S
    Life Sci; 1976 Oct; 19(7):1061-6. PubMed ID: 186677
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulation of dopamine-dependent adenylate cyclase by a Ca++ binding protein stored in synaptic membranes.
    Costa E; Gnegy M; Revuelta A; Uzunov P
    Adv Biochem Psychopharmacol; 1977; 16():403-8. PubMed ID: 18889
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of morphine sulfate on adenylate cyclase and phosphodiesterase activities in rat corpus striatum.
    Puri SK; Cochin J; Volicer L
    Life Sci; 1975 Mar; 16(5):759-67. PubMed ID: 164598
    [No Abstract]   [Full Text] [Related]  

  • 8. Haloperidol increases and apomorphine decreases striatal dopamine metabolism after destruction of striatal dopamine-sensitive adenylate cyclase by kainic acid.
    Di Chiara G; Porceddu ML; Spano PF; Gessa GL
    Brain Res; 1977 Jul; 130(2):374-82. PubMed ID: 884534
    [No Abstract]   [Full Text] [Related]  

  • 9. Receptor-linked cyclic AMP systems in rat neostriatum: differential localization revealed by kainic acid injection.
    Minneman KP; Quik M; Emson PC
    Brain Res; 1978 Aug; 151(3):507-21. PubMed ID: 27287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agonist-induced subsensitivity of adenylate cyclase coupled with a dopamine receptor in slices from rat corpus striatum.
    Memo M; Lovenberg W; Hanbauer I
    Proc Natl Acad Sci U S A; 1982 Jul; 79(14):4456-60. PubMed ID: 6956874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein activator of cyclic 3':5'-nucleotide phosphodiesterase of bovine or rat brain also activates its adenylate cyclase.
    Cheung WY; Bradham LS; Lynch TJ; Lin YM; Tallant EA
    Biochem Biophys Res Commun; 1975 Oct; 66(3):1055-62. PubMed ID: 170936
    [No Abstract]   [Full Text] [Related]  

  • 12. Is dopamine-sensitive adenylate cyclase involved in regulating the activity of striatal cholinergic neurons?
    Euvrard C; Premont J; Oberlander C; Boissier JR; Bockaert J
    Naunyn Schmiedebergs Arch Pharmacol; 1979 Nov; 309(3):241-5. PubMed ID: 530305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 6-Hydroxydopamine lesions of rat substantia nigra up-regulate dopamine-induced phosphorylation of the cAMP-response element-binding protein in striatal neurons.
    Cole DG; Kobierski LA; Konradi C; Hyman SE
    Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9631-5. PubMed ID: 7937819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic activation of brain adenylate cyclase by calmodulin, and either GTP or catecholamines including dopamine.
    Natsukari N; Hanai H; Matsunaga T; Fujita M
    Brain Res; 1990 Nov; 534(1-2):170-6. PubMed ID: 1963559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Striatal c-fos levels do not correlate with haloperidol-induced behavioral supersensitivity.
    Marin C; Bonastre M; Tolosa E
    Synapse; 1996 Jun; 23(2):89-93. PubMed ID: 8723713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium dissociates haloperidol-induced behavioral supersensitivity from reduced dopac increase in rat striatum.
    Meller E; Friedman E
    Eur J Pharmacol; 1981 Nov; 76(1):25-9. PubMed ID: 7318921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenylate cyclase and cyclic AMP phosphodiesterase in Bradyrhizobium japonicum bacteroids.
    Catanese CA; Emerich DW; Zahler WL
    J Bacteriol; 1989 Sep; 171(9):4531-6. PubMed ID: 2548992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum. II. No effect on denervation or neuroleptic-induced supersensitivity.
    Staunton DA; Magistretti PJ; Shoemaker WJ; Deyo SN; Bloom FE
    Brain Res; 1982 Jan; 232(2):401-12. PubMed ID: 6322915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation by GTP of basal and agonist-stimulated striatal adenylate cyclase activity following chronic blockade of D1 and D2 dopamine receptors: involvement of G proteins in the development of receptor supersensitivity.
    Schettini G; Ventra C; Florio T; Grimaldi M; Meucci O; Marino A
    J Neurochem; 1992 Nov; 59(5):1667-74. PubMed ID: 1402912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine supersensitivity and D1/D2 synergism are unrelated to changes in striatal receptor density.
    LaHoste GJ; Marshall JF
    Synapse; 1992 Sep; 12(1):14-26. PubMed ID: 1357762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.