BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2028917)

  • 1. The effectiveness of ice- and Freon-based personal cooling systems during work in fully encapsulating suits in the heat.
    White MK; Glenn SP; Hudnall J; Rice C; Clark S
    Am Ind Hyg Assoc J; 1991 Mar; 52(3):127-35. PubMed ID: 2028917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat strain reduction by ice-based and vapor compression liquid cooling systems with a toxic agent protective uniform.
    Cadarette BS; Levine L; Kolka MA; Proulx GN; Correa MM; Sawka MN
    Aviat Space Environ Med; 2002 Jul; 73(7):665-72. PubMed ID: 12137102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Work tolerance and subjective responses to wearing protective clothing and respirators during physical work.
    White MK; Vercruyssen M; Hodous TK
    Ergonomics; 1989 Sep; 32(9):1111-23. PubMed ID: 2806234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upper body cooling during exercise-heat stress wearing the improved toxicological agent protective system for HAZMAT operations.
    Cadarette BS; Levine L; Staab JE; Kolka MA; Correa MM; Whipple M; Sawka MN
    AIHA J (Fairfax, Va); 2003; 64(4):510-5. PubMed ID: 12908867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of liquid cooling garments on recovery and performance time in individuals performing strenuous work wearing a firefighter ensemble.
    Kim JH; Coca A; Williams WJ; Roberge RJ
    J Occup Environ Hyg; 2011 Jul; 8(7):409-16. PubMed ID: 21660834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Readdressing personal cooling with ice.
    Kamon E; Kenney WL; Deno NS; Soto KI; Carpenter AJ
    Am Ind Hyg Assoc J; 1986 May; 47(5):293-8. PubMed ID: 3717014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal responses and physiological strain in men wearing impermeable and semipermeable protective clothing in the cold.
    Rissanen S; Rintamäki H
    Ergonomics; 1997 Feb; 40(2):141-50. PubMed ID: 9118932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ice cooling vest on tolerance for exercise under uncompensable heat stress.
    Kenny GP; Schissler AR; Stapleton J; Piamonte M; Binder K; Lynn A; Lan CQ; Hardcastle SG
    J Occup Environ Hyg; 2011 Aug; 8(8):484-91. PubMed ID: 21756138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of thermal environment and chemical protective clothing on work tolerance, physiological responses, and subjective ratings.
    White MK; Hodous TK; Vercruyssen M
    Ergonomics; 1991 Apr; 34(4):445-57. PubMed ID: 1860463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a novel ice-cooling technique on work in protective clothing at 28 degrees C, 23 degrees C, and 18 degrees C WBGTs.
    Muir IH; Bishop PA; Ray P
    Am Ind Hyg Assoc J; 1999; 60(1):96-104. PubMed ID: 10028621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoregulatory response to wearing encapsulated protective clothing during simulated work in various thermal environments.
    Payne WR; Portier B; Fairweather I; Zhou S; Snow R
    Am Ind Hyg Assoc J; 1994 Jun; 55(6):529-36. PubMed ID: 8017293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active versus passive cooling during work in warm environments while wearing firefighting protective clothing.
    Selkirk GA; McLellan TM; Wong J
    J Occup Environ Hyg; 2004 Aug; 1(8):521-31. PubMed ID: 15238305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and subjective responses to working in disposable protective coveralls and respirators commonly used by the asbestos abatement industry.
    White MK; Hodous TK; Hudnall JB
    Am Ind Hyg Assoc J; 1989 Jun; 50(6):313-9. PubMed ID: 2735315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermittent microclimate cooling during exercise-heat stress in US army chemical protective clothing.
    Cadarette BS; Cheuvront SN; Kolka MA; Stephenson LA; Montain SJ; Sawka MN
    Ergonomics; 2006 Feb; 49(2):209-19. PubMed ID: 16484146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of endurance training and heat acclimation on psychological strain in exercising men wearing protective clothing.
    Aoyagi Y; McLellan TM; Shephard RJ
    Ergonomics; 1998 Mar; 41(3):328-57. PubMed ID: 9520629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat strain and heat stress for workers wearing protective suits at a hazardous waste site.
    Paull JM; Rosenthal FS
    Am Ind Hyg Assoc J; 1987 May; 48(5):458-63. PubMed ID: 3591668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body cooling with ice for warm-water diving operations.
    Holmér I
    Undersea Biomed Res; 1989 Nov; 16(6):471-9. PubMed ID: 2603244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat strain attenuation while wearing NBC clothing: dry-ice vest compared to water spray.
    Heled Y; Epstein Y; Moran DS
    Aviat Space Environ Med; 2004 May; 75(5):391-6. PubMed ID: 15152890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of air and liquid cooling during light and heavy exercise while wearing NBC clothing.
    McLellan TM; Frim J; Bell DG
    Aviat Space Environ Med; 1999 Aug; 70(8):802-11. PubMed ID: 10447055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of rest pauses and cooling in alleviation of heat stress during simulated fire-fighting activity.
    Carter JB; Banister EW; Morrison JB
    Ergonomics; 1999 Feb; 42(2):299-313. PubMed ID: 10024849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.