These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 20291063)

  • 1. The determination of glycine in protein hydrolysates with Leuconostoc mesenteroides P-60.
    SHANKMAN S; CAMIEN MN; DUNN MS
    J Biol Chem; 1947 Apr; 168(1):51-60. PubMed ID: 20291063
    [No Abstract]   [Full Text] [Related]  

  • 2. Investigations of amino acids, peptides, and proteins; the determination of phenylalanine in protein hydrolysates with Leuconostoc mesenteroides P-60 and Lactobacillus casei.
    DUNN MS; SHANKMAN S; CAMIEN MN
    J Biol Chem; 1945 Dec; 161():643-55. PubMed ID: 21006946
    [No Abstract]   [Full Text] [Related]  

  • 3. EFFECT OF ALANINE AND THREONINE ON THE SYNTHESIS OF SERINE BY LEUCONOSTOC MESENTEROIDES.
    O'BARR TP
    J Bacteriol; 1963 Dec; 86(6):1321-5. PubMed ID: 14086108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane specificity of Leuconostoc mesenteroides for the stereoisomeric forms of glycine and valine dipeptides.
    Yoder OC; Beamer KC; Shelton DC
    Can J Biochem; 1967 Feb; 45(2):213-20. PubMed ID: 6021177
    [No Abstract]   [Full Text] [Related]  

  • 5. [A new method for separation of glycine from protein hydrolysates].
    Rolski S; Sokolowska M
    Acta Pol Pharm; 1967; 24(3):287-9. PubMed ID: 6055827
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of Leuconostoc spp. on the formation of Streptococcus mutans biofilm.
    Kang MS; Kang IC; Kim SM; Lee HC; Oh JS
    J Microbiol; 2007 Aug; 45(4):291-6. PubMed ID: 17846581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KINETIC STUDIES OF L-VALINE AND GLYCYL-L-VALINE UPTAKE BY LEUCONOSTOC MESENTEROIDES.
    YODER OC; BEAMER KC; CIPOLLONI PB; SHELTON DC
    Arch Biochem Biophys; 1965 May; 110():336-40. PubMed ID: 14342729
    [No Abstract]   [Full Text] [Related]  

  • 8. Metabolism of C14 labeled glycine, L-histidine, L-leucine, and L-lysine.
    BORSOOK H; DEASY CL; HAAGENSMIT AJ; KEIGHLEY G; LOWY PH
    J Biol Chem; 1950 Dec; 187(2):839-48. PubMed ID: 14803468
    [No Abstract]   [Full Text] [Related]  

  • 9. The putative immunity protein of the gram-positive bacteria Leuconostoc mesenteroides is preferentially located in the cytoplasm compartment.
    Dayem MA; Fleury Y; Devilliers G; Chaboisseau E; Girard R; Nicolas P; Delfour A
    FEMS Microbiol Lett; 1996 May; 138(2-3):251-9. PubMed ID: 9026455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proposal of Leuconostoc mesenteroides subsp. jonggajibkimchii subsp. nov. and reclassification of Leuconostoc mesenteroides subsp. suionicum (Gu et al., 2012) as Leuconostoc suionicum sp. nov. based on complete genome sequences.
    Jeon HH; Kim KH; Chun BH; Ryu BH; Han NS; Jeon CO
    Int J Syst Evol Microbiol; 2017 Jul; 67(7):2225-2230. PubMed ID: 28671527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for the direct isolation of glycine from protein hydrolysates.
    SELIM AS; EL-WAHAB ME; EL-SADR MM
    Biochem J; 1955 Oct; 61(2):177-9. PubMed ID: 13260194
    [No Abstract]   [Full Text] [Related]  

  • 12. Isolation and characterization of a cryptic plasmid, pMBLR00, from Leuconostoc mesenteroides subsp. mesenteroides KCTC 3733.
    Chae HS; Lee JM; Lee JH; Lee PC
    J Microbiol Biotechnol; 2013 Jun; 23(6):837-42. PubMed ID: 23676906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the
    Peng YW; Jin HX
    J Microbiol Biotechnol; 2018 Dec; 28(12):2009-2018. PubMed ID: 30304917
    [No Abstract]   [Full Text] [Related]  

  • 14. Reduction of D-lactate content in sauerkraut using starter cultures of recombinant Leuconostoc mesenteroides expressing the ldhL gene.
    Jin Q; Li L; Moon JS; Cho SK; Kim YJ; Lee SJ; Han NS
    J Biosci Bioeng; 2016 May; 121(5):479-83. PubMed ID: 26472127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular diversity of leuconostoc mesenteroides and leuconostoc citreum isolated from traditional french cheeses as revealed by RAPD fingerprinting, 16S rDNA sequencing and 16S rDNA fragment amplification.
    Cibik R; Lepage E; Talliez P
    Syst Appl Microbiol; 2000 Jun; 23(2):267-78. PubMed ID: 10930080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of pFMBL1, a small cryptic plasmid isolated from Leuconostoc mesenteroides SY2.
    Jeong SJ; Park JY; Lee HJ; Kim JH
    Plasmid; 2007 May; 57(3):314-23. PubMed ID: 17084452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of strains of Leuconostoc mesenteroides by analysis of soluble whole-cell protein pattern, DNA fingerprinting and restriction of ribosomal DNA.
    Villani F; Moschetti G; Blaiotta G; Coppola S
    J Appl Microbiol; 1997 May; 82(5):578-88. PubMed ID: 9172399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of pFR18, a small cryptic plasmid from Leuconostoc mesenteroides ssp. mesenteroides FR52, and its use as a food grade vector.
    Biet F; Cenatiempo Y; Fremaux C
    FEMS Microbiol Lett; 1999 Oct; 179(2):375-83. PubMed ID: 10518740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Levansucrase from Leuconostoc mesenteroides NTM048 produces a levan exopolysaccharide with immunomodulating activity.
    Ishida R; Sakaguchi K; Matsuzaki C; Katoh T; Ishida N; Yamamoto K; Hisa K
    Biotechnol Lett; 2016 Apr; 38(4):681-7. PubMed ID: 26960415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation.
    Jung JY; Lee SH; Lee HJ; Seo HY; Park WS; Jeon CO
    Int J Food Microbiol; 2012 Feb; 153(3):378-87. PubMed ID: 22189023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.