These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2029647)

  • 1. The role of free radicals in myocardial cell injury.
    Kobayashi A; Hayashi H; Watanabe H; Miyata H; Kurata C; Yamazaki N
    Bratisl Lek Listy; 1991 Feb; 92(2):59-65. PubMed ID: 2029647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of hydrogen peroxide on action potentials and intracellular Ca2+ concentration of guinea pig heart.
    Hayashi H; Miyata H; Watanabe H; Kobayashi A; Yamazaki N
    Cardiovasc Res; 1989 Sep; 23(9):767-73. PubMed ID: 2611815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations of human erythrocyte membrane fluidity by oxygen-derived free radicals and calcium.
    Watanabe H; Kobayashi A; Yamamoto T; Suzuki S; Hayashi H; Yamazaki N
    Free Radic Biol Med; 1990; 8(6):507-14. PubMed ID: 2163349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reperfusion damage: free radicals mediate delayed membrane changes rather than early ventricular arrhythmias.
    Coetzee WA; Owen P; Dennis SC; Saman S; Opie LH
    Cardiovasc Res; 1990 Feb; 24(2):156-64. PubMed ID: 2328520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free radicals alter ionic calcium levels and membrane phospholipids in cultured rat ventricular myocytes.
    Burton KP; Morris AC; Massey KD; Buja LM; Hagler HK
    J Mol Cell Cardiol; 1990 Sep; 22(9):1035-47. PubMed ID: 2126294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of free radicals on the fluidity of myocardial membranes.
    Bagchi M; Prasad MR; Engelman RM; Das DK
    Free Radic Res Commun; 1989; 7(3-6):375-80. PubMed ID: 2583554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of strophanthidin on intracellular Ca2+ concentration and cellular morphology of guinea pig myocytes.
    Miyata H; Hayashi H; Kobayashi A; Yamazaki N
    Cardiovasc Res; 1989 May; 23(5):378-84. PubMed ID: 2611807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scavenging effects of baicalin on free radicals and its protection on erythrocyte membrane from free radical injury.
    Shi H; Zhao B; Xin W
    Biochem Mol Biol Int; 1995 Apr; 35(5):981-94. PubMed ID: 7549941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen free radicals and excitation-contraction coupling.
    Goldhaber JI; Qayyum MS
    Antioxid Redox Signal; 2000; 2(1):55-64. PubMed ID: 11232601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on the reaction of human erythrocytes with hydrogen peroxide.
    Yamaguchi T; Fujita Y; Kuroki S; Ohtsuka K; Kimoto E
    J Biochem; 1983 Aug; 94(2):379-86. PubMed ID: 6313634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the mechanisms of hydrogen peroxide and hydroxyl free radical-induced cellular injury and calcium overload in cardiac myocytes.
    Josephson RA; Silverman HS; Lakatta EG; Stern MD; Zweier JL
    J Biol Chem; 1991 Feb; 266(4):2354-61. PubMed ID: 1846625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of calcium, insulin and growth hormone on membrane fluidity. A spin label study of rat adipocyte and human erythrocyte ghosts.
    Sauerheber RD; Lewis UJ; Esgate JA; Gordon LM
    Biochim Biophys Acta; 1980 Apr; 597(2):292-304. PubMed ID: 6245691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid diffusion in sperm plasma membranes exposed to peroxidative injury from oxygen free radicals.
    Christova Y; James PS; Jones R
    Mol Reprod Dev; 2004 Jul; 68(3):365-72. PubMed ID: 15112331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen peroxide induced changes in membrane potentials in guinea pig ventricular muscle: permissive role of iron.
    Firek L; Beresewicz A
    Cardiovasc Res; 1990 Jun; 24(6):493-9. PubMed ID: 2386993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change in fluidity of brain endoplasmic reticulum membranes by oxygen free radicals: a protective effect of stobadine, alpha-tocopherol acetate, and butylated hydroxytoluene.
    Kaplán P; Racay P; Lehotský J; Mézesová V
    Neurochem Res; 1995 Jul; 20(7):815-20. PubMed ID: 7477674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycolytic inhibition and calcium overload as consequences of exogenously generated free radicals in rabbit hearts.
    Corretti MC; Koretsune Y; Kusuoka H; Chacko VP; Zweier JL; Marban E
    J Clin Invest; 1991 Sep; 88(3):1014-25. PubMed ID: 1653271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane fluidity of blood cells.
    Hollán S
    Haematologia (Budap); 1996; 27(3):109-27. PubMed ID: 14653448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of oxygen free radicals in myocardial ischemia/reperfusion injury.
    Chen S; Zhu Q; Ju H; Hao J; Lai Z; Zou C; Zhang W; Zhao S; Chen X; Zhang H
    Chin Med Sci J; 1991 Sep; 6(3):127-31. PubMed ID: 1793873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneity in cellular response and intracellular distribution of Ca2+ concentration during and after metabolic inhibition.
    Hayashi H; Miyata H; Kobayashi A; Yamazaki N
    Cardiovasc Res; 1990 Jul; 24(7):605-8. PubMed ID: 2208212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free radical effects on myocardial membrane microviscosity.
    Coetzee IH; Lochner A
    Cardioscience; 1993 Dec; 4(4):205-15. PubMed ID: 8298062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.