BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 2029764)

  • 1. Maturational increase in mouse brain creatine kinase reaction rates shown by phosphorus magnetic resonance.
    Holtzman D; McFarland EW; Jacobs D; Offutt MC; Neuringer LJ
    Brain Res Dev Brain Res; 1991 Feb; 58(2):181-8. PubMed ID: 2029764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creatine kinase-catalyzed reaction rate in the cyanide-poisoned mouse brain.
    Holtzman D; Offutt M; Tsuji M; Neuringer LJ; Jacobs D
    J Cereb Blood Flow Metab; 1993 Jan; 13(1):153-61. PubMed ID: 8417004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in swine brain creatine kinase-catalyzed 31P exchange measured in vivo using 31P NMR magnetization transfer.
    Corbett RJ; Laptook AR
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):1070-7. PubMed ID: 7929650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain creatine kinase reaction rates and reactant concentrations during seizures in developing rats.
    Holtzman D; Meyers R; Khait I; Jensen F
    Epilepsy Res; 1997 Apr; 27(1):7-11. PubMed ID: 9169286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro determination of creatine kinase substrate fluxes using 31P-nuclear magnetic resonance.
    Conrad A; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1995 Jan; 1243(1):117-23. PubMed ID: 7827099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 31P magnetization transfer studies of creatine kinase kinetics in living rabbit brain.
    Degani H; Alger JR; Shulman RG; Petroff OA; Prichard JW
    Magn Reson Med; 1987 Jul; 5(1):1-12. PubMed ID: 3657491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 31P magnetization transfer studies in the monkey brain.
    Mora BN; Narasimhan PT; Ross BD
    Magn Reson Med; 1992 Jul; 26(1):100-15. PubMed ID: 1625557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo brain phosphocreatine and ATP regulation in mice fed a creatine analog.
    Holtzman D; Meyers R; O'Gorman E; Khait I; Wallimann T; Allred E; Jensen F
    Am J Physiol; 1997 May; 272(5 Pt 1):C1567-77. PubMed ID: 9176148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphocreatine and creatine kinase in piglet cerebral gray and white matter in situ.
    Holtzman D; Mulkern R; Tsuji M; Cook C; Meyers R
    Dev Neurosci; 1996; 18(5-6):535-41. PubMed ID: 8940629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo phosphocreatine and ATP in piglet cerebral gray and white matter during seizures.
    Holtzman D; Mulkern R; Meyers R; Cook C; Allred E; Khait I; Jensen F; Tsuji M; Laussen P
    Brain Res; 1998 Feb; 783(1):19-27. PubMed ID: 9479037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphocreatine and ATP regulation in the hypoxic developing rat brain.
    Tsuji M; Allred E; Jensen F; Holtzman D
    Brain Res Dev Brain Res; 1995 Apr; 85(2):192-200. PubMed ID: 7600667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creatine kinase-catalyzed ATP-phosphocreatine exchange: comparison of 31P-NMR saturation transfer technique and radioisotope tracer methods.
    Kupriyanov VV; Lyulina NV; Steinschneider AYa ; Zueva MYu ; Saks VA
    FEBS Lett; 1986 Nov; 208(1):89-93. PubMed ID: 3770212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance.
    Gadian DG; Radda GK; Brown TR; Chance EM; Dawson MJ; Wilkie DR
    Biochem J; 1981 Jan; 194(1):215-28. PubMed ID: 6975619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain creatine kinase with aging in F-344 rats: analysis by saturation transfer magnetic resonance spectroscopy.
    Smith CD; Landrum W; Carney JM; Landfield PW; Avison MJ
    Neurobiol Aging; 1997; 18(6):617-22. PubMed ID: 9461059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two repetition time saturation transfer (TwiST) with spill-over correction to measure creatine kinase reaction rates in human hearts.
    Schär M; Gabr RE; El-Sharkawy AM; Steinberg A; Bottomley PA; Weiss RG
    J Cardiovasc Magn Reson; 2015 Aug; 17(1):70. PubMed ID: 26253320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study.
    Bottomley PA; Wu KC; Gerstenblith G; Schulman SP; Steinberg A; Weiss RG
    Circulation; 2009 Apr; 119(14):1918-24. PubMed ID: 19332463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increase of creatine kinase activity in the visual cortex of human brain during visual stimulation: a 31P magnetization transfer study.
    Chen W; Zhu XH; Adriany G; Ugurbil K
    Magn Reson Med; 1997 Oct; 38(4):551-7. PubMed ID: 9324321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study.
    Degani H; Laughlin M; Campbell S; Shulman RG
    Biochemistry; 1985 Sep; 24(20):5510-6. PubMed ID: 4074712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K; Bottomley PA; Weiss RG
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.