These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20298128)

  • 1. A practical and feasible control system for bifunctional myoelectric hand prostheses.
    Hamdi N; Dweiri Y; Al-Abdallat Y; Haneya T
    Prosthet Orthot Int; 2010 Jun; 34(2):195-205. PubMed ID: 20298128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-degree-of-freedom powered prosthetic wrist.
    Kyberd PJ; Lemaire ED; Scheme E; MacPhail C; Goudreau L; Bush G; Brookeshaw M
    J Rehabil Res Dev; 2011; 48(6):609-17. PubMed ID: 21938649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using speech for mode selection in control of multifunctional myoelectric prostheses.
    Fang P; Wei Z; Geng Y; Yao F; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3602-5. PubMed ID: 24110509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving bimanual interaction with a prosthesis using semi-autonomous control.
    Volkmar R; Dosen S; Gonzalez-Vargas J; Baum M; Markovic M
    J Neuroeng Rehabil; 2019 Nov; 16(1):140. PubMed ID: 31727087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of vibrotactile feedback and grasp interface compliance on perception and control of a sensorized myoelectric hand.
    Pena AE; Rincon-Gonzalez L; Abbas JJ; Jung R
    PLoS One; 2019; 14(1):e0210956. PubMed ID: 30650161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intelligent multifunction myoelectric control of hand prostheses.
    Light CM; Chappell PH; Hudgins B; Engelhart K
    J Med Eng Technol; 2002; 26(4):139-46. PubMed ID: 12396328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory feedback add-on for upper-limb prostheses.
    Fallahian N; Saeedi H; Mokhtarinia H; Tabatabai Ghomshe F
    Prosthet Orthot Int; 2017 Jun; 41(3):314-317. PubMed ID: 28468600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extending mode switching to multiple degrees of freedom in hand prosthesis control is not efficient.
    Amsuess S; Goebel P; Graimann B; Farina D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():658-61. PubMed ID: 25570045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Simultaneous and Proportional Myoelectric Control Scheme for Individuals with Transradial Amputations.
    Pradhan A; Kuruganti U; Hill W; Jiang N; Chester V
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3098-3101. PubMed ID: 33018660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional benefit of an adaptive myoelectric prosthetic hand compared to a conventional myoelectric hand.
    Bergman K; Ornholmer L; Zackrisson K; Thyberg M
    Prosthet Orthot Int; 1992 Apr; 16(1):32-7. PubMed ID: 1584641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myoelectric hand prostheses in very young children.
    Egermann M; Kasten P; Thomsen M
    Int Orthop; 2009 Aug; 33(4):1101-5. PubMed ID: 18636257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical evaluation of the revolutionizing prosthetics modular prosthetic limb system for upper extremity amputees.
    Yu KE; Perry BN; Moran CW; Armiger RS; Johannes MS; Hawkins A; Stentz L; Vandersea J; Tsao JW; Pasquina PF
    Sci Rep; 2021 Jan; 11(1):954. PubMed ID: 33441604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching.
    Edwards AL; Dawson MR; Hebert JS; Sherstan C; Sutton RS; Chan KM; Pilarski PM
    Prosthet Orthot Int; 2016 Oct; 40(5):573-81. PubMed ID: 26423106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses.
    Li G; Schultz AE; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):185-92. PubMed ID: 20071269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Expanding control possibilities of myoelectric hand prostheses].
    Reischl M; Mikut R; Pylatiuk C; Schulz S
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():868-70. PubMed ID: 12465328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses.
    Clemente F; D'Alonzo M; Controzzi M; Edin BB; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1314-1322. PubMed ID: 26584497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis.
    Matrone GC; Cipriani C; Carrozza MC; Magenes G
    J Neuroeng Rehabil; 2012 Jun; 9():40. PubMed ID: 22703711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. i-MYO: A multi-grasp prosthetic hand control system based on gaze movements, augmented reality, and myoelectric signals.
    Shi C; Zhao J; Yang D; Jiang L
    Int J Med Robot; 2024 Feb; 20(1):e2617. PubMed ID: 38536731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A synergy-driven approach to a myoelectric hand.
    Godfrey SB; Ajoudani A; Catalano M; Grioli G; Bicchi A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650377. PubMed ID: 24187196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.