These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 20298202)

  • 1. Stochastic aspects of transmitter release and bioenergetic dysfunction in isolated nerve terminals.
    Nicholls DG
    Biochem Soc Trans; 2010 Apr; 38(2):457-9. PubMed ID: 20298202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol depletion attenuates tonic release but increases the ambient level of glutamate in rat brain synaptosomes.
    Borisova T; Krisanova N; Sivko R; Borysov A
    Neurochem Int; 2010 Feb; 56(3):466-78. PubMed ID: 20025918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure.
    Choi SW; Gerencser AA; Nicholls DG
    J Neurochem; 2009 May; 109(4):1179-91. PubMed ID: 19519782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No consistent bioenergetic defects in presynaptic nerve terminals isolated from mouse models of Alzheimer's disease.
    Choi SW; Gerencser AA; Ng R; Flynn JM; Melov S; Danielson SR; Gibson BW; Nicholls DG; Bredesen DE; Brand MD
    J Neurosci; 2012 Nov; 32(47):16775-84. PubMed ID: 23175831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N type Ca2+ channels and RIM scaffold protein covary at the presynaptic transmitter release face but are components of independent protein complexes.
    Khanna R; Li Q; Sun L; Collins TJ; Stanley EF
    Neuroscience; 2006 Jul; 140(4):1201-8. PubMed ID: 16757118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caffeine facilitation of glutamate release from rat cerebral cortex nerve terminals (synaptosomes) through activation protein kinase C pathway: an interaction with presynaptic adenosine A1 receptors.
    Wang SJ
    Synapse; 2007 Jun; 61(6):401-11. PubMed ID: 17372967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facilitatory effect of glutamate exocytosis from rat cerebrocortical nerve terminals by alpha-tocopherol, a major vitamin E component.
    Yang TT; Wang SJ
    Neurochem Int; 2008 May; 52(6):979-89. PubMed ID: 18037536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presynaptic mechanisms underlying the alpha-lipoic acid facilitation of glutamate exocytosis in rat cerebral cortex nerve terminals.
    Wang SJ; Chen HH
    Neurochem Int; 2007 Jan; 50(1):51-60. PubMed ID: 16949179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Src family tyrosine kinases differentially modulate exocytosis from rat brain nerve terminals.
    Baldwin ML; Cammarota M; Sim AT; Rostas JA
    Neurochem Int; 2006 Jul; 49(1):80-6. PubMed ID: 16500731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptopathy under conditions of altered gravity: changes in synaptic vesicle fusion and glutamate release.
    Krisanova NV; Trikash IO; Borisova TA
    Neurochem Int; 2009 Dec; 55(8):724-31. PubMed ID: 19631248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic disruption of transmitter release by lead.
    Suszkiw JB
    Neurotoxicology; 2004 Jun; 25(4):599-604. PubMed ID: 15183013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes).
    Wang SJ; Wang KY; Wang WC
    Neuroscience; 2004; 125(1):191-201. PubMed ID: 15051158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of presynaptic glucocorticoid receptors on glutamate release from rat hippocampal nerve terminals.
    Wang CC; Wang SJ
    Synapse; 2009 Sep; 63(9):745-51. PubMed ID: 19484722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional evidence for presynaptic P2X7 receptors in adult rat cerebrocortical nerve terminals.
    Alloisio S; Cervetto C; Passalacqua M; Barbieri R; Maura G; Nobile M; Marcoli M
    FEBS Lett; 2008 Nov; 582(28):3948-53. PubMed ID: 18977353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type-3 ryanodine receptor involved in Ca2+-induced Ca2+ release and transmitter exocytosis at frog motor nerve terminals.
    Kubota M; Narita K; Murayama T; Suzuki S; Soga S; Usukura J; Ogawa Y; Kuba K
    Cell Calcium; 2005 Dec; 38(6):557-67. PubMed ID: 16157373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absence of junctional glutamate receptor clusters in Drosophila mutants lacking spontaneous transmitter release.
    Saitoe M; Schwarz TL; Umbach JA; Gundersen CB; Kidokoro Y
    Science; 2001 Jul; 293(5529):514-7. PubMed ID: 11463917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial compensation for N-type Ca(2+) channel loss by P/Q-type Ca(2+) channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals.
    Ladera C; Martín R; Bartolomé-Martín D; Torres M; Sánchez-Prieto J
    Eur J Neurosci; 2009 Mar; 29(6):1131-40. PubMed ID: 19302149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic calcium stores and synaptic transmission.
    Collin T; Marty A; Llano I
    Curr Opin Neurobiol; 2005 Jun; 15(3):275-81. PubMed ID: 15919193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioenergetics and transmitter release in the isolated nerve terminal.
    Nicholls DG
    Neurochem Res; 2003 Oct; 28(10):1433-41. PubMed ID: 14570388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-vesicle hypothesis for neurotransmitter release: a possible molecular mechanism.
    Yusim K; Parnas H; Segel LA
    Bull Math Biol; 2001 Nov; 63(6):1025-40. PubMed ID: 11732174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.