BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20298239)

  • 1. Involvement of mitochondria in the control of plant cell NAD(P)H reduction levels.
    Rasmusson AG; Wallström SV
    Biochem Soc Trans; 2010 Apr; 38(2):661-6. PubMed ID: 20298239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris.
    Liu YJ; Norberg FE; Szilágyi A; De Paepe R; Akerlund HE; Rasmusson AG
    Plant Cell Physiol; 2008 Feb; 49(2):251-63. PubMed ID: 18182402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of the external mitochondrial NADPH dehydrogenase, NDB1, in Arabidopsis thaliana affects central metabolism and vegetative growth.
    Wallström SV; Florez-Sarasa I; Araújo WL; Aidemark M; Fernández-Fernández M; Fernie AR; Ribas-Carbó M; Rasmusson AG
    Mol Plant; 2014 Feb; 7(2):356-68. PubMed ID: 23939432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in the mitochondrial alternative NAD(P)H Dehydrogenase NDB4 lead to changes in mitochondrial electron transport chain composition, plant growth and response to oxidative stress.
    Smith C; Barthet M; Melino V; Smith P; Day D; Soole K
    Plant Cell Physiol; 2011 Jul; 52(7):1222-37. PubMed ID: 21659327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reoxidation of cytosolic NADPH in Kluyveromyces lactis.
    Tarrío N; Becerra M; Cerdán ME; González Siso MI
    FEMS Yeast Res; 2006 May; 6(3):371-80. PubMed ID: 16630277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria.
    Rasmusson AG; Geisler DA; Møller IM
    Mitochondrion; 2008 Jan; 8(1):47-60. PubMed ID: 18033742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria.
    Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative detection of the expression of mitochondrial cytochrome c oxidase subunits mRNA in the cerebral cortex after experimental traumatic brain injury.
    Dai W; Cheng HL; Huang RQ; Zhuang Z; Shi JX
    Brain Res; 2009 Jan; 1251():287-95. PubMed ID: 19063873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial redox biology and homeostasis in plants.
    Noctor G; De Paepe R; Foyer CH
    Trends Plant Sci; 2007 Mar; 12(3):125-34. PubMed ID: 17293156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The external alternative NAD(P)H dehydrogenase NDE3 is localized both in the mitochondria and in the cytoplasm of Neurospora crassa.
    Carneiro P; Duarte M; Videira A
    J Mol Biol; 2007 May; 368(4):1114-21. PubMed ID: 17379240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes.
    Cui K; Ma Q; Lu AY; Yang CS
    Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M
    Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation-reduction and reactive oxygen species homeostasis in mutant plants with respiratory chain complex I dysfunction.
    Juszczuk IM; Szal B; Rychter AM
    Plant Cell Environ; 2012 Feb; 35(2):296-307. PubMed ID: 21414015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for the role of the proline-linked pentose-phosphate pathway in phenolic phytochemical bio-synthesis and mechanism of action for human health and environmental applications.
    Shetty K; Wahlqvist ML
    Asia Pac J Clin Nutr; 2004; 13(1):1-24. PubMed ID: 15003910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions.
    Noctor G; Queval G; Gakière B
    J Exp Bot; 2006; 57(8):1603-20. PubMed ID: 16714307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences.
    Ying W
    Antioxid Redox Signal; 2008 Feb; 10(2):179-206. PubMed ID: 18020963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of mitochondrial NADPH : NAD transhydrogenase with electron transport in adult Hymenolepis diminuta.
    Fioravanti CF
    J Parasitol; 1981 Dec; 67(6):823-31. PubMed ID: 7328455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KlADH3, a gene encoding a mitochondrial alcohol dehydrogenase, affects respiratory metabolism and cytochrome content in Kluyveromyces lactis.
    Saliola M; De Maria I; Lodi T; Fiori A; Falcone C
    FEMS Yeast Res; 2006 Dec; 6(8):1184-92. PubMed ID: 17156015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mediator-assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells.
    Heiskanen A; Spégel C; Kostesha N; Lindahl S; Ruzgas T; Emnéus J
    Anal Biochem; 2009 Jan; 384(1):11-9. PubMed ID: 18812160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.