These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 20298526)

  • 1. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions.
    Ertl P; Schuffenhauer A
    J Cheminform; 2009 Jun; 1(1):8. PubMed ID: 20298526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists.
    Bonnet P
    Eur J Med Chem; 2012 Aug; 54():679-89. PubMed ID: 22749644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the synthetic accessibility of molecules with building block and reaction-aware SAScore.
    Chen S; Jung Y
    J Cheminform; 2024 Jul; 16(1):83. PubMed ID: 39044299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RASA: a rapid retrosynthesis-based scoring method for the assessment of synthetic accessibility of drug-like molecules.
    Huang Q; Li LL; Yang SY
    J Chem Inf Model; 2011 Oct; 51(10):2768-77. PubMed ID: 21932860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SYBA: Bayesian estimation of synthetic accessibility of organic compounds.
    Voršilák M; Kolář M; Čmelo I; Svozil D
    J Cheminform; 2020 May; 12(1):35. PubMed ID: 33431015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating synthetic accessibility with AI-based generative drug design.
    Parrot M; Tajmouati H; da Silva VBR; Atwood BR; Fourcade R; Gaston-Mathé Y; Do Huu N; Perron Q
    J Cheminform; 2023 Sep; 15(1):83. PubMed ID: 37726842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic Compound Synthetic Accessibility Prediction Based on the Graph Attention Mechanism.
    Yu J; Wang J; Zhao H; Gao J; Kang Y; Cao D; Wang Z; Hou T
    J Chem Inf Model; 2022 Jun; 62(12):2973-2986. PubMed ID: 35675668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and reaction based evaluation of synthetic accessibility.
    Boda K; Seidel T; Gasteiger J
    J Comput Aided Mol Des; 2007 Jun; 21(6):311-25. PubMed ID: 17294248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wisdom of crowds for synthetic accessibility evaluation.
    Baba Y; Isomura T; Kashima H
    J Mol Graph Model; 2018 Mar; 80():217-223. PubMed ID: 29414041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Compound Synthesis Accessibility Based on Reaction Knowledge Graph.
    Li B; Chen H
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RetroGNN: Fast Estimation of Synthesizability for Virtual Screening and De Novo Design by Learning from Slow Retrosynthesis Software.
    Liu CH; Korablyov M; Jastrzębski S; Włodarczyk-Pruszyński P; Bengio Y; Segler M
    J Chem Inf Model; 2022 May; 62(10):2293-2300. PubMed ID: 35452226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LeadOp+R: Structure-Based Lead Optimization With Synthetic Accessibility.
    Lin FY; Esposito EX; Tseng YJ
    Front Pharmacol; 2018; 9():96. PubMed ID: 29556192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PhDD: a new pharmacophore-based de novo design method of drug-like molecules combined with assessment of synthetic accessibility.
    Huang Q; Li LL; Yang SY
    J Mol Graph Model; 2010 Jun; 28(8):775-87. PubMed ID: 20206562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning.
    Skoraczyński G; Kitlas M; Miasojedow B; Gambin A
    J Cheminform; 2023 Jan; 15(1):6. PubMed ID: 36641473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFRscore: Deep Learning-Based Scoring of Synthetic Complexity with Drug-Focused Retrosynthetic Analysis for High-Throughput Virtual Screening.
    Kim H; Lee K; Kim C; Lim J; Kim WY
    J Chem Inf Model; 2024 Apr; 64(7):2432-2444. PubMed ID: 37651152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing synthetic accessibility of chemical compounds using machine learning methods.
    Podolyan Y; Walters MA; Karypis G
    J Chem Inf Model; 2010 Jun; 50(6):979-91. PubMed ID: 20536191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragment screening: an introduction.
    Leach AR; Hann MM; Burrows JN; Griffen EJ
    Mol Biosyst; 2006 Sep; 2(9):430-46. PubMed ID: 17153140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanding Bioactive Fragment Space with the Generated Database GDB-13s.
    Buehler Y; Reymond JL
    J Chem Inf Model; 2023 Oct; 63(20):6239-6248. PubMed ID: 37722101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Materials Precursor Score: Modeling Chemists' Intuition for the Synthetic Accessibility of Porous Organic Cage Precursors.
    Bennett S; Szczypiński FT; Turcani L; Briggs ME; Greenaway RL; Jelfs KE
    J Chem Inf Model; 2021 Sep; 61(9):4342-4356. PubMed ID: 34388347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LEADD: Lamarckian evolutionary algorithm for de novo drug design.
    Kerstjens A; De Winter H
    J Cheminform; 2022 Jan; 14(1):3. PubMed ID: 35033209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.