These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20298562)

  • 1. A predictive computational model of the kinetic mechanism of stimulus-induced transducer methylation and feedback regulation through CheY in archaeal phototaxis and chemotaxis.
    Streif S; Oesterhelt D; Marwan W
    BMC Syst Biol; 2010 Mar; 4():27. PubMed ID: 20298562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of methylation sites and effects of phototaxis stimuli on transducer methylation in Halobacterium salinarum.
    Perazzona B; Spudich JL
    J Bacteriol; 1999 Sep; 181(18):5676-83. PubMed ID: 10482508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory rhodopsins I and II modulate a methylation/demethylation system in Halobacterium halobium phototaxis.
    Spudich EN; Takahashi T; Spudich JL
    Proc Natl Acad Sci U S A; 1989 Oct; 86(20):7746-50. PubMed ID: 2682623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BasT, a membrane-bound transducer protein for amino acid detection in Halobacterium salinarum.
    Kokoeva MV; Oesterhelt D
    Mol Microbiol; 2000 Feb; 35(3):647-56. PubMed ID: 10672186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus.
    Schlesner M; Miller A; Streif S; Staudinger WF; Müller J; Scheffer B; Siedler F; Oesterhelt D
    BMC Microbiol; 2009 Mar; 9():56. PubMed ID: 19291314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory rhodopsin II transducer HtrII is also responsible for serine chemotaxis in the archaeon Halobacterium salinarum.
    Hou S; Brooun A; Yu HS; Freitas T; Alam M
    J Bacteriol; 1998 Mar; 180(6):1600-2. PubMed ID: 9515936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I.
    Yao VJ; Spudich JL
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11915-9. PubMed ID: 1465418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methyl-accepting protein associated with bacterial sensory rhodopsin I.
    Spudich EN; Hasselbacher CA; Spudich JL
    J Bacteriol; 1988 Sep; 170(9):4280-5. PubMed ID: 3410829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of the transducer protein from sensory rhodopsin I exposes sites of proton release and uptake during the receptor photocycle.
    Olson KD; Spudich JL
    Biophys J; 1993 Dec; 65(6):2578-85. PubMed ID: 8312493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photostimulation of a sensory rhodopsin II/HtrII/Tsr fusion chimera activates CheA-autophosphorylation and CheY-phosphotransfer in vitro.
    Trivedi VD; Spudich JL
    Biochemistry; 2003 Dec; 42(47):13887-92. PubMed ID: 14636056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppressor mutation analysis of the sensory rhodopsin I-transducer complex: insights into the color-sensing mechanism.
    Jung KH; Spudich JL
    J Bacteriol; 1998 Apr; 180(8):2033-42. PubMed ID: 9555883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological sites of deamidation and methyl esterification in sensory transducers of Halobacterium salinarum.
    Koch MK; Staudinger WF; Siedler F; Oesterhelt D
    J Mol Biol; 2008 Jul; 380(2):285-302. PubMed ID: 18514223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal relay from sensory rhodopsin I to the cognate transducer HtrI: assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53.
    Radu I; Budyak IL; Hoomann T; Kim YJ; Engelhard M; Labahn J; Büldt G; Heberle J; Schlesinger R
    Biophys Chem; 2010 Aug; 150(1-3):23-8. PubMed ID: 20303644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Blue-Green Sensory Rhodopsin SRM from Haloarcula marismortui Attenuates Both Phototactic Responses Mediated by Sensory Rhodopsin I and II in Halobacterium salinarum.
    Chen JL; Lin YC; Fu HY; Yang CS
    Sci Rep; 2019 Apr; 9(1):5672. PubMed ID: 30952934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CheY-dependent methylation of the asparagine receptor, McpB, during chemotaxis in Bacillus subtilis.
    Kirby JR; Saulmon MM; Kristich CJ; Ordal GW
    J Biol Chem; 1999 Apr; 274(16):11092-100. PubMed ID: 10196193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices.
    Zhang XN; Zhu J; Spudich JL
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):857-62. PubMed ID: 9927658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Color-specific conditioning effects due to both orange and blue stimuli are observed in a Halobacterium salinarum strain devoid of putative methylatable sites on HtrI.
    Lucia S; Cercignani G; Frediani A; Petracchi D
    Photochem Photobiol; 2003 Jan; 77(1):110-3. PubMed ID: 12856891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protonatable residues at the cytoplasmic end of transmembrane helix-2 in the signal transducer HtrI control photochemistry and function of sensory rhodopsin I.
    Jung KH; Spudich JL
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6557-61. PubMed ID: 8692855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The methyl-accepting transducer protein HtrI is functionally associated with the photoreceptor sensory rhodopsin I in the archaeon Halobacterium salinarium.
    Ferrando-May E; Krah M; Marwan W; Oesterhelt D
    EMBO J; 1993 Aug; 12(8):2999-3005. PubMed ID: 8344242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptor methylation controls the magnitude of stimulus-response coupling in bacterial chemotaxis.
    Levit MN; Stock JB
    J Biol Chem; 2002 Sep; 277(39):36760-5. PubMed ID: 12119291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.