These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
779 related articles for article (PubMed ID: 20298873)
1. Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs). Gallego E; Roca FJ; Perales JF; Guardino X Talanta; 2010 May; 81(3):916-24. PubMed ID: 20298873 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of the adsorption performance of an active multi-sorbent bed tube (Carbotrap, Carbopack X, Carboxen 569) and a Radiello(®) diffusive sampler for the analysis of VOCs. Gallego E; Roca FJ; Perales JF; Guardino X Talanta; 2011 Jul; 85(1):662-72. PubMed ID: 21645756 [TBL] [Abstract][Full Text] [Related]
3. Multisorbent tubes for collecting volatile organic compounds in spacecraft air. Matney ML; Beck SW; Limero TF; James JT AIHAJ; 2000; 61(1):69-75. PubMed ID: 10772617 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the stability of a mixture of volatile organic compounds on sorbents for the determination of emissions from indoor materials and products using thermal desorption/gas chromatography/mass spectrometry. Brown VM; Crump DR; Plant NT; Pengelly I J Chromatogr A; 2014 Jul; 1350():1-9. PubMed ID: 24877978 [TBL] [Abstract][Full Text] [Related]
5. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options. Woolfenden E J Chromatogr A; 2010 Apr; 1217(16):2674-84. PubMed ID: 20106481 [TBL] [Abstract][Full Text] [Related]
7. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis. Kanamori-Kataoka M; Seto Y J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699 [TBL] [Abstract][Full Text] [Related]
8. Characterization and determination of the odorous charge in the indoor air of a waste treatment facility through the evaluation of volatile organic compounds (VOCs) using TD-GC/MS. Gallego E; Roca FJ; Perales JF; Sánchez G; Esplugas P Waste Manag; 2012 Dec; 32(12):2469-81. PubMed ID: 22883687 [TBL] [Abstract][Full Text] [Related]
9. Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent adsorption and gas chromatography/mass spectrometry thermal desorption system. Ribes A; Carrera G; Gallego E; Roca X; Berenguer MA; Guardino X J Chromatogr A; 2007 Jan; 1140(1-2):44-55. PubMed ID: 17187810 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of adsorbents for volatile methyl siloxanes sampling based on the determination of their breakthrough volume. Lamaa L; Ferronato C; Fine L; Jaber F; Chovelon JM Talanta; 2013 Oct; 115():881-6. PubMed ID: 24054678 [TBL] [Abstract][Full Text] [Related]
11. Comparison of two common adsorption materials for thermal desorption gas chromatography - mass spectrometry of biogenic volatile organic compounds. Marcillo A; Jakimovska V; Widdig A; Birkemeyer C J Chromatogr A; 2017 Sep; 1514():16-28. PubMed ID: 28765001 [TBL] [Abstract][Full Text] [Related]
12. Needle microextraction trap for on-site analysis of airborne volatile compounds at ultra-trace levels in gaseous samples. Alonso M; Godayol A; Antico E; Sanchez JM J Sep Sci; 2011 Oct; 34(19):2705-11. PubMed ID: 21818851 [TBL] [Abstract][Full Text] [Related]
13. New approach to resolve the humidity problem in VOC determination in outdoor air samples using solid adsorbent tubes followed by TD-GC-MS. Maceira A; Vallecillos L; Borrull F; Marcé RM Sci Total Environ; 2017 Dec; 599-600():1718-1727. PubMed ID: 28535600 [TBL] [Abstract][Full Text] [Related]
14. Development and validation of an automated monitoring system for oxygenated volatile organic compounds and nitrile compounds in ambient air. Roukos J; Plaisance H; Leonardis T; Bates M; Locoge N J Chromatogr A; 2009 Dec; 1216(49):8642-51. PubMed ID: 19863965 [TBL] [Abstract][Full Text] [Related]
15. Extent of sample loss on the sampling device and the resulting experimental biases when collecting volatile fatty acids (VFAs) in air using sorbent tubes. Kim YH; Kim KH Anal Chem; 2013 Aug; 85(16):7818-25. PubMed ID: 23869450 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of solvent extraction and thermal desorption methods for determining a wide range of volatile organic compounds in ambient air. Ramírez N; Cuadras A; Rovira E; Borrull F; Marcé RM Talanta; 2010 Jul; 82(2):719-27. PubMed ID: 20602960 [TBL] [Abstract][Full Text] [Related]
17. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods. Woolfenden E J Chromatogr A; 2010 Apr; 1217(16):2685-94. PubMed ID: 20106482 [TBL] [Abstract][Full Text] [Related]
18. Validation of adsorbents for sample preconcentration in compound-specific isotope analysis of common vapor intrusion pollutants. Klisch M; Kuder T; Philp RP; McHugh TE J Chromatogr A; 2012 Dec; 1270():20-7. PubMed ID: 23177155 [TBL] [Abstract][Full Text] [Related]
19. Passive sampling for volatile organic compounds in indoor air-controlled laboratory comparison of four sampler types. McAlary T; Groenevelt H; Disher S; Arnold J; Seethapathy S; Sacco P; Crump D; Schumacher B; Hayes H; Johnson P; Górecki T Environ Sci Process Impacts; 2015 May; 17(5):896-905. PubMed ID: 25861049 [TBL] [Abstract][Full Text] [Related]
20. Surface emission determination of volatile organic compounds (VOC) from a closed industrial waste landfill using a self-designed static flux chamber. Gallego E; Perales JF; Roca FJ; Guardino X Sci Total Environ; 2014 Feb; 470-471():587-99. PubMed ID: 24176707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]